|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.init as init |
|
import logging |
|
from diffusers.models.attention import Attention |
|
from diffusers.utils import USE_PEFT_BACKEND, is_xformers_available |
|
from typing import Optional, Callable |
|
|
|
from einops import rearrange |
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class AttnProcessor: |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
pose_feature=None, |
|
) -> torch.Tensor: |
|
residual = hidden_states |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
pose_feature=None |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class XFormersAttnProcessor: |
|
r""" |
|
Processor for implementing memory efficient attention using xFormers. |
|
|
|
Args: |
|
attention_op (`Callable`, *optional*, defaults to `None`): |
|
The base |
|
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to |
|
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best |
|
operator. |
|
""" |
|
|
|
def __init__(self, attention_op: Optional[Callable] = None): |
|
self.attention_op = attention_op |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
pose_feature=None, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, key_tokens, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) |
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
_, query_tokens, _ = hidden_states.shape |
|
attention_mask = attention_mask.expand(-1, query_tokens, -1) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
query = attn.head_to_batch_dim(query).contiguous() |
|
key = attn.head_to_batch_dim(key).contiguous() |
|
value = attn.head_to_batch_dim(value).contiguous() |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class PoseAdaptorAttnProcessor(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size, |
|
pose_feature_dim=None, |
|
cross_attention_dim=None, |
|
query_condition=False, |
|
key_value_condition=False, |
|
scale=1.0, |
|
): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.pose_feature_dim = pose_feature_dim |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.query_condition = query_condition |
|
self.key_value_condition = key_value_condition |
|
assert hidden_size == pose_feature_dim |
|
if self.query_condition and self.key_value_condition: |
|
self.qkv_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.qkv_merge.weight) |
|
init.zeros_(self.qkv_merge.bias) |
|
elif self.query_condition: |
|
self.q_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.q_merge.weight) |
|
init.zeros_(self.q_merge.bias) |
|
else: |
|
self.kv_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.kv_merge.weight) |
|
init.zeros_(self.kv_merge.bias) |
|
|
|
def forward( |
|
self, |
|
attn, |
|
hidden_states, |
|
pose_feature, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
scale=None, |
|
): |
|
assert pose_feature is not None |
|
pose_embedding_scale = (scale or self.scale) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
assert hidden_states.ndim == 3 and pose_feature.ndim == 3 |
|
|
|
if self.query_condition and self.key_value_condition: |
|
assert encoder_hidden_states is None |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
assert encoder_hidden_states.ndim == 3 |
|
|
|
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
if self.query_condition and self.key_value_condition: |
|
query_hidden_state = self.qkv_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states |
|
key_value_hidden_state = query_hidden_state |
|
elif self.query_condition: |
|
query_hidden_state = self.q_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states |
|
key_value_hidden_state = encoder_hidden_states |
|
else: |
|
key_value_hidden_state = self.kv_merge(encoder_hidden_states + pose_feature) * pose_embedding_scale + encoder_hidden_states |
|
query_hidden_state = hidden_states |
|
|
|
|
|
query = attn.to_q(query_hidden_state) |
|
key = attn.to_k(key_value_hidden_state) |
|
value = attn.to_v(key_value_hidden_state) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class PoseAdaptorAttnProcessor2_0(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size, |
|
pose_feature_dim=None, |
|
cross_attention_dim=None, |
|
query_condition=False, |
|
key_value_condition=False, |
|
scale=1.0, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.hidden_size = hidden_size |
|
self.pose_feature_dim = pose_feature_dim |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.query_condition = query_condition |
|
self.key_value_condition = key_value_condition |
|
assert hidden_size == pose_feature_dim |
|
if self.query_condition and self.key_value_condition: |
|
self.qkv_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.qkv_merge.weight) |
|
init.zeros_(self.qkv_merge.bias) |
|
elif self.query_condition: |
|
self.q_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.q_merge.weight) |
|
init.zeros_(self.q_merge.bias) |
|
else: |
|
self.kv_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.kv_merge.weight) |
|
init.zeros_(self.kv_merge.bias) |
|
|
|
def forward( |
|
self, |
|
attn, |
|
hidden_states, |
|
pose_feature, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
scale=None, |
|
): |
|
assert pose_feature is not None |
|
pose_embedding_scale = (scale or self.scale) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
assert hidden_states.ndim == 3 and pose_feature.ndim == 3 |
|
|
|
if self.query_condition and self.key_value_condition: |
|
assert encoder_hidden_states is None |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
assert encoder_hidden_states.ndim == 3 |
|
|
|
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape |
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
if self.query_condition and self.key_value_condition: |
|
query_hidden_state = self.qkv_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states |
|
key_value_hidden_state = query_hidden_state |
|
elif self.query_condition: |
|
query_hidden_state = self.q_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states |
|
key_value_hidden_state = encoder_hidden_states |
|
else: |
|
key_value_hidden_state = self.kv_merge(encoder_hidden_states + pose_feature) * pose_embedding_scale + encoder_hidden_states |
|
query_hidden_state = hidden_states |
|
|
|
|
|
query = attn.to_q(query_hidden_state) |
|
key = attn.to_k(key_value_hidden_state) |
|
value = attn.to_v(key_value_hidden_state) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class PoseAdaptorXFormersAttnProcessor(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size, |
|
pose_feature_dim=None, |
|
cross_attention_dim=None, |
|
query_condition=False, |
|
key_value_condition=False, |
|
scale=1.0, |
|
attention_op: Optional[Callable] = None, |
|
): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.pose_feature_dim = pose_feature_dim |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.query_condition = query_condition |
|
self.key_value_condition = key_value_condition |
|
self.attention_op = attention_op |
|
assert hidden_size == pose_feature_dim |
|
if self.query_condition and self.key_value_condition: |
|
self.qkv_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.qkv_merge.weight) |
|
init.zeros_(self.qkv_merge.bias) |
|
elif self.query_condition: |
|
self.q_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.q_merge.weight) |
|
init.zeros_(self.q_merge.bias) |
|
else: |
|
self.kv_merge = nn.Linear(hidden_size, hidden_size) |
|
init.zeros_(self.kv_merge.weight) |
|
init.zeros_(self.kv_merge.bias) |
|
|
|
def forward( |
|
self, |
|
attn, |
|
hidden_states, |
|
pose_feature, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
scale=None, |
|
): |
|
assert pose_feature is not None |
|
pose_embedding_scale = (scale or self.scale) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
assert hidden_states.ndim == 3 and pose_feature.ndim == 3 |
|
|
|
if self.query_condition and self.key_value_condition: |
|
assert encoder_hidden_states is None |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
assert encoder_hidden_states.ndim == 3 |
|
|
|
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) |
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
_, query_tokens, _ = hidden_states.shape |
|
attention_mask = attention_mask.expand(-1, query_tokens, -1) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
if self.query_condition and self.key_value_condition: |
|
query_hidden_state = self.qkv_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states |
|
key_value_hidden_state = query_hidden_state |
|
elif self.query_condition: |
|
query_hidden_state = self.q_merge(hidden_states + pose_feature) * pose_embedding_scale + hidden_states |
|
key_value_hidden_state = encoder_hidden_states |
|
else: |
|
key_value_hidden_state = self.kv_merge(encoder_hidden_states + pose_feature) * pose_embedding_scale + encoder_hidden_states |
|
query_hidden_state = hidden_states |
|
|
|
|
|
query = attn.to_q(query_hidden_state) |
|
key = attn.to_k(key_value_hidden_state) |
|
value = attn.to_v(key_value_hidden_state) |
|
|
|
query = attn.head_to_batch_dim(query).contiguous() |
|
key = attn.head_to_batch_dim(key).contiguous() |
|
value = attn.head_to_batch_dim(value).contiguous() |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|