AniDoc / scripts_infer /anidoc_inference.py
fffiloni's picture
Migrated from GitHub
c705408 verified
import sys
from pyparsing import col
sys.path.insert(0,".")
import argparse
from packaging import version
import glob
import os
from LightGlue.lightglue import LightGlue, SuperPoint, DISK, SIFT, ALIKED, DoGHardNet
from LightGlue.lightglue.utils import load_image, rbd
from cotracker.predictor import CoTrackerPredictor, sample_trajectories, generate_gassian_heatmap, sample_trajectories_with_ref
import torch
from diffusers.utils.import_utils import is_xformers_available
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from pipelines.AniDoc import AniDocPipeline
from models_diffusers.controlnet_svd import ControlNetSVDModel
from diffusers.utils import load_image, export_to_video, export_to_gif
import time
from lineart_extractor.annotator.lineart import LineartDetector
import numpy as np
from PIL import Image
from utils import load_images_from_folder,export_gif_with_ref,export_gif_side_by_side,extract_frames_from_video,safe_round,select_multiple_points,generate_point_map,generate_point_map_frames,export_gif_side_by_side_complete,export_gif_side_by_side_complete_ablation
import random
import torchvision.transforms as T
from LightGlue.lightglue import viz2d
import matplotlib.pyplot as plt
from cotracker.utils.visualizer import Visualizer, read_video_from_path
from torchvision.transforms import PILToTensor
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default="pretrained_weights/stable-video-diffusion-img2vid-xt", help="Path to the input image.")
parser.add_argument(
"--pretrained_unet", type=str, help="Path to the input image.",
default="pretrained_weights/anidoc"
)
parser.add_argument(
"--controlnet_model_name_or_path", type=str, help="Path to the input image.",
default="pretrained_weights/anidoc/controlnet"
)
parser.add_argument("--output_dir", type=str, default=None, help="Path to the output video.")
parser.add_argument("--seed", type=int, default=42, help="random seed.")
parser.add_argument("--noise_aug", type=float, default=0.02)
parser.add_argument("--num_frames", type=int, default=14)
parser.add_argument("--width", type=int, default=512)
parser.add_argument("--height", type=int, default=320)
parser.add_argument("--all_sketch",action="store_true",help="all_sketch")
parser.add_argument("--not_quant_sketch",action="store_true",help="not_quant_sketch")
parser.add_argument("--repeat_sketch",action="store_true",help="not_quant_sketch")
parser.add_argument("--matching",action="store_true",help="add keypoint matching")
parser.add_argument("--tracking",action="store_true",help="tracking keypoint")
parser.add_argument("--repeat_matching",action="store_true",help="not tracking, but just simply repeat")
parser.add_argument("--tracker_point_init", type=str, default='gaussion', choices=['dift', 'gaussion', 'both'], help="Regular grid size")
parser.add_argument(
"--tracker_shift_grid",
type=int, default=0, choices=[0, 1],
help="shift the grid for the tracker")
parser.add_argument("--tracker_grid_size", type=int, default=8, help="Regular grid size")
parser.add_argument(
"--tracker_grid_query_frame",
type=int,
default=0,
help="Compute dense and grid tracks starting from this frame",
)
parser.add_argument(
"--tracker_backward_tracking",
action="store_true",
help="Compute tracks in both directions, not only forward",
)
parser.add_argument("--control_image", type=str, default=None, help="Path to the output video.")
parser.add_argument("--ref_image", type=str, default=None, help="Path to the output video.")
parser.add_argument("--max_points", type=int, default=10)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
dtype = torch.float16
unet = UNetSpatioTemporalConditionModel.from_pretrained(
args.pretrained_unet,
subfolder="unet",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
custom_resume=True,
)
unet.to("cuda",dtype)
if args.controlnet_model_name_or_path:
controlnet = ControlNetSVDModel.from_pretrained(
args.controlnet_model_name_or_path,
)
else:
controlnet = ControlNetSVDModel.from_unet(
unet,
conditioning_channels=8
)
controlnet.to("cuda",dtype)
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly")
pipe = AniDocPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
controlnet=controlnet,
low_cpu_mem_usage=False,
torch_dtype=torch.float16, variant="fp16"
)
pipe.to("cuda")
device = "cuda"
detector = LineartDetector(device)
extractor = SuperPoint(max_num_keypoints=2000).eval().to(device) # load the extractor
matcher = LightGlue(features='superpoint').eval().to(device) # load the matcher
tracker = CoTrackerPredictor(
checkpoint="pretrained_weights/cotracker2.pth",
shift_grid=args.tracker_shift_grid,
)
tracker.requires_grad_(False)
tracker.to(device, dtype=torch.float32)
width, height = args.width, args.height
# image = load_image('dalle3_cat.jpg')
if args.output_dir is None:
args.output_dir = "results"
os.makedirs(args.output_dir, exist_ok=True)
image_folder_list=[
'data_test/sample1.mp4',
]
ref_image_list=[
"data_test/sample1.png",
]
if args.ref_image is not None and args.control_image is not None:
ref_image_list=[args.ref_image]
image_folder_list=[args.control_image]
for val_id ,each_sample in enumerate(image_folder_list):
if os.path.isdir(each_sample):
control_images=load_images_from_folder(each_sample)
elif each_sample.endswith(".mp4"):
control_images = extract_frames_from_video(each_sample)
ref_image=load_image(ref_image_list[val_id]).resize((width, height))
#resize:
for j, each in enumerate(control_images):
control_images[j]=control_images[j].resize((width, height))
# load image from folder
if args.all_sketch:
controlnet_image=[]
for k in range(len(control_images)):
sketch=control_images[k]
sketch = np.array(sketch)
sketch=detector(sketch,coarse=False)
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
if args.not_quant_sketch:
pass
else:
sketch= (sketch > 200).astype(np.uint8)*255
sketch = Image.fromarray(sketch).resize((width, height))
controlnet_image.append(sketch)
controlnet_sketch_condition = [T.ToTensor()(img).unsqueeze(0) for img in controlnet_image]
controlnet_sketch_condition = torch.cat(controlnet_sketch_condition, dim=0).unsqueeze(0).to(device, dtype=torch.float16)
controlnet_sketch_condition = (controlnet_sketch_condition - 0.5) / 0.5 #(1,14,3,h,w)
# matching condition
with torch.no_grad():
ref_img_value = T.ToTensor()(ref_image).to(device, dtype=torch.float16) #(0,1)
ref_img_value = ref_img_value.to(torch.float32)
current_img= T.ToTensor()(controlnet_image[0]).to(device, dtype=torch.float16) #(0,1)
current_img = current_img.to(torch.float32)
feats0 = extractor.extract(ref_img_value)
feats1 = extractor.extract(current_img)
matches01 = matcher({'image0': feats0, 'image1': feats1})
feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]]
matches = matches01['matches']
points0 = feats0['keypoints'][matches[..., 0]]
points1 = feats1['keypoints'][matches[..., 1]]
points0 = points0.cpu().numpy()
# points0_org=points0.copy()
points1 = points1.cpu().numpy()
points0 = safe_round(points0, current_img.shape)
points1 = safe_round(points1, current_img.shape)
num_points = min(50, points0.shape[0])
points0,points1 = select_multiple_points(points0, points1, num_points)
mask1, mask2 = generate_point_map(size=current_img.shape, coords0=points0, coords1=points1)
# import ipdb;ipdb.set_trace()
point_map1=torch.from_numpy(mask1)
point_map2=torch.from_numpy(mask2)
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16)
point_map2 = point_map2.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16)
point_map=torch.cat([point_map1,point_map2],dim=2)
conditional_pixel_values=ref_img_value.unsqueeze(0).unsqueeze(0)
conditional_pixel_values = (conditional_pixel_values - 0.5) / 0.5
point_map_with_ref= torch.cat([point_map,conditional_pixel_values],dim=2)
original_shape = list(point_map_with_ref.shape)
new_shape = original_shape.copy()
new_shape[1] = args.num_frames-1
if args.repeat_matching:
matching_controlnet_image=point_map_with_ref.repeat(1,args.num_frames,1,1,1)
controlnet_condition=torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2)
elif args.tracking:
with torch.no_grad():
video_for_tracker = (controlnet_sketch_condition * 0.5 + 0.5) * 255.
queries = np.insert(points1,0,0,axis=1)
queries =torch.from_numpy(queries).to(device,torch.float).unsqueeze(0)
if queries.shape[1]==0:
pred_tracks_sampled=None
points0_sampled = None
else:
pred_tracks, pred_visibility = tracker(
video_for_tracker.to(dtype=torch.float32),
queries=queries,
grid_size=args.tracker_grid_size, # 8
grid_query_frame=args.tracker_grid_query_frame, # 0
backward_tracking=args.tracker_backward_tracking, # False
# segm_mask=segm_mask,
)
pred_tracks_sampled, pred_visibility_sampled,points0_sampled = sample_trajectories_with_ref(
pred_tracks.cpu(), pred_visibility.cpu(), torch.from_numpy(points0).unsqueeze(0).cpu(),
max_points=args.max_points,
motion_threshold=1,
vis_threshold=3,
)
if pred_tracks_sampled is None:
mask1 = np.zeros((args.height, args.width), dtype=np.uint8)
mask2 = np.zeros((args.num_frames,args.height, args.width), dtype=np.uint8)
else:
pred_tracks_sampled = pred_tracks_sampled.squeeze(0).cpu().numpy()
pred_visibility_sampled =pred_visibility_sampled.squeeze(0).cpu().numpy()
points0_sampled =points0_sampled.squeeze(0).cpu().numpy()
for frame_id in range(args.num_frames):
pred_tracks_sampled[frame_id] = safe_round(pred_tracks_sampled[frame_id],current_img.shape)
points0_sampled = safe_round(points0_sampled,current_img.shape)
mask1, mask2 = generate_point_map_frames(size=current_img.shape, coords0=points0_sampled,coords1=pred_tracks_sampled,visibility=pred_visibility_sampled)
point_map1=torch.from_numpy(mask1)
point_map2=torch.from_numpy(mask2)
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).repeat(1,args.num_frames,1,1,1).to(device, dtype=torch.float16)
point_map2 = point_map2.unsqueeze(0).unsqueeze(2).to(device, dtype=torch.float16)
point_map=torch.cat([point_map1,point_map2],dim=2)
conditional_pixel_values_repeat=conditional_pixel_values.repeat(1,14,1,1,1)
point_map_with_ref= torch.cat([point_map,conditional_pixel_values_repeat],dim=2)
controlnet_condition= torch.cat([controlnet_sketch_condition, point_map_with_ref], dim=2)
else:
zero_tensor = torch.zeros(new_shape).to(device, dtype=torch.float16)
matching_controlnet_image=torch.cat((point_map_with_ref,zero_tensor),dim=1)
controlnet_condition = torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2)
ref_base_name=os.path.splitext(os.path.basename(ref_image_list[val_id]))[0]
sketch_base_name=os.path.splitext(os.path.basename(each_sample))[0]
supp_dir=os.path.join(args.output_dir,ref_base_name+"_"+sketch_base_name)
os.makedirs(supp_dir, exist_ok=True)
elif args.repeat_sketch:
controlnet_image=[]
for i_2 in range(int(len(control_images)/2)):
sketch=control_images[0]
sketch = np.array(sketch)
sketch=detector(sketch,coarse=False)
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
if args.not_quant_sketch:
pass
else:
sketch= (sketch > 200).astype(np.uint8)*255
sketch = Image.fromarray(sketch)
controlnet_image.append(sketch)
for i_3 in range(int(len(control_images)/2)):
sketch=control_images[-1]
sketch = np.array(sketch)
sketch=detector(sketch,coarse=False)
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2)
if args.not_quant_sketch:
pass
else:
sketch= (sketch > 200).astype(np.uint8)*255
sketch = Image.fromarray(sketch)
controlnet_image.append(sketch)
generator = torch.manual_seed(args.seed)
with torch.inference_mode():
video_frames = pipe(
ref_image,
controlnet_condition,
height=args.height,
width=args.width,
num_frames=14,
decode_chunk_size=8,
motion_bucket_id=127,
fps=7,
noise_aug_strength=0.02,
generator=generator,
).frames[0]
out_file = supp_dir+'.mp4'
if args.all_sketch:
export_gif_side_by_side_complete_ablation(ref_image,controlnet_image,video_frames,out_file.replace('.mp4','.gif'),supp_dir,6)
elif args.repeat_sketch:
export_gif_with_ref(control_images[0],video_frames,controlnet_image[-1],controlnet_image[0],out_file.replace('.mp4','.gif'),6)