# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import imageio import torch from matplotlib import cm import torch.nn.functional as F import torchvision.transforms as transforms import matplotlib.pyplot as plt from PIL import Image, ImageDraw # import av # import decord import torchvision from einops import rearrange def read_video_from_path(path): # try: # reader = imageio.get_reader(path) # except Exception as e: # print("Error opening video file: ", e) # return None # frames = [] # for i, im in enumerate(reader): # frames.append(np.array(im)) # return np.stack(frames) # # read videe using decord # video = decord.VideoReader(path) # frames = video.get_batch(range(len(video))) # frames = [frame.asnumpy() for frame in frames] # return np.stack(frames) # read video using torchvision vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='THWC') vframes = vframes.numpy() return vframes def draw_circle(rgb, coord, radius, color=(255, 0, 0), visible=True): # Create a draw object draw = ImageDraw.Draw(rgb) # Calculate the bounding box of the circle left_up_point = (coord[0] - radius, coord[1] - radius) right_down_point = (coord[0] + radius, coord[1] + radius) # Draw the circle draw.ellipse( [left_up_point, right_down_point], fill=tuple(color) if visible else None, outline=tuple(color), ) return rgb def draw_line(rgb, coord_y, coord_x, color, linewidth): draw = ImageDraw.Draw(rgb) draw.line( (coord_y[0], coord_y[1], coord_x[0], coord_x[1]), fill=tuple(color), width=linewidth, ) return rgb def add_weighted(rgb, alpha, original, beta, gamma): return (rgb * alpha + original * beta + gamma).astype("uint8") class Visualizer: def __init__( self, save_dir: str = "./results", grayscale: bool = False, pad_value: int = 0, fps: int = 10, mode: str = "rainbow", # 'cool', 'optical_flow' linewidth: int = 2, show_first_frame: int = 10, tracks_leave_trace: int = 0, # -1 for infinite ): self.mode = mode self.save_dir = save_dir if mode == "rainbow": self.color_map = cm.get_cmap("gist_rainbow") elif mode == "cool": self.color_map = cm.get_cmap(mode) self.show_first_frame = show_first_frame self.grayscale = grayscale self.tracks_leave_trace = tracks_leave_trace self.pad_value = pad_value self.linewidth = linewidth self.fps = fps def visualize( self, video: torch.Tensor, # (B,T,C,H,W) tracks: torch.Tensor, # (B,T,N,2) visibility: torch.Tensor = None, # (B, T, N, 1) bool gt_tracks: torch.Tensor = None, # (B,T,N,2) segm_mask: torch.Tensor = None, # (B,1,H,W) filename: str = "video", writer=None, # tensorboard Summary Writer, used for visualization during training step: int = 0, query_frame: int = 0, save_video: bool = True, compensate_for_camera_motion: bool = False, ): if compensate_for_camera_motion: assert segm_mask is not None if segm_mask is not None: coords = tracks[0, query_frame].round().long() segm_mask = segm_mask[0, query_frame][coords[:, 1], coords[:, 0]].long() video = F.pad( video, (self.pad_value, self.pad_value, self.pad_value, self.pad_value), "constant", 255, ) tracks = tracks + self.pad_value if self.grayscale: transform = transforms.Grayscale() video = transform(video) video = video.repeat(1, 1, 3, 1, 1) res_video = self.draw_tracks_on_video( video=video, tracks=tracks, visibility=visibility, segm_mask=segm_mask, gt_tracks=gt_tracks, query_frame=query_frame, compensate_for_camera_motion=compensate_for_camera_motion, ) if save_video: self.save_video(res_video, filename=filename, writer=writer, step=step) return res_video def save_video(self, video, filename, writer=None, step=0): if writer is not None: writer.add_video( filename, video.to(torch.uint8), global_step=step, fps=self.fps, ) else: os.makedirs(self.save_dir, exist_ok=True) # Prepare the video file path save_path = os.path.join(self.save_dir, f"{filename}.mp4") # save video using torchvision assert video.shape[0] == 1 video = rearrange(video[0], 'T C H W -> T H W C') torchvision.io.write_video(save_path, video, fps=self.fps) # wide_list = list(video.unbind(1)) # wide_list = [wide[0].permute(1, 2, 0).cpu().numpy() for wide in wide_list] # # Create a writer object # video_writer = imageio.get_writer(save_path, fps=self.fps) # # Write frames to the video file # for frame in wide_list[2:-1]: # video_writer.append_data(frame) # video_writer.close() # # pyav # container = av.open(save_path, mode="w") # stream = container.add_stream("h264", rate=self.fps) # for frame in wide_list[2:-1]: # frame = Image.fromarray(frame) # frame = np.array(frame) # frame = av.VideoFrame.from_ndarray(frame, format="rgb24") # for packet in stream.encode(frame): # container.mux(packet) print(f"Video saved to {save_path}") def draw_tracks_on_video( self, video: torch.Tensor, tracks: torch.Tensor, visibility: torch.Tensor = None, segm_mask: torch.Tensor = None, gt_tracks=None, query_frame: int = 0, compensate_for_camera_motion=False, ): B, T, C, H, W = video.shape _, _, N, D = tracks.shape assert D == 2 assert C == 3 video = video[0].permute(0, 2, 3, 1).byte().detach().cpu().numpy() # S, H, W, C tracks = tracks[0].long().detach().cpu().numpy() # S, N, 2 if gt_tracks is not None: gt_tracks = gt_tracks[0].detach().cpu().numpy() res_video = [] # process input video for rgb in video: res_video.append(rgb.copy()) vector_colors = np.zeros((T, N, 3)) # define vector colors if self.mode == "optical_flow": import flow_vis vector_colors = flow_vis.flow_to_color(tracks - tracks[query_frame][None]) elif segm_mask is None: if self.mode == "rainbow": y_min, y_max = ( tracks[query_frame, :, 1].min(), tracks[query_frame, :, 1].max(), ) norm = plt.Normalize(y_min, y_max) for n in range(N): color = self.color_map(norm(tracks[query_frame, n, 1])) color = np.array(color[:3])[None] * 255 vector_colors[:, n] = np.repeat(color, T, axis=0) else: # color changes with time for t in range(T): color = np.array(self.color_map(t / T)[:3])[None] * 255 vector_colors[t] = np.repeat(color, N, axis=0) else: if self.mode == "rainbow": vector_colors[:, segm_mask <= 0, :] = 255 y_min, y_max = ( tracks[0, segm_mask > 0, 1].min(), tracks[0, segm_mask > 0, 1].max(), ) norm = plt.Normalize(y_min, y_max) for n in range(N): if segm_mask[n] > 0: color = self.color_map(norm(tracks[0, n, 1])) color = np.array(color[:3])[None] * 255 vector_colors[:, n] = np.repeat(color, T, axis=0) else: # color changes with segm class segm_mask = segm_mask.cpu() color = np.zeros((segm_mask.shape[0], 3), dtype=np.float32) color[segm_mask > 0] = np.array(self.color_map(1.0)[:3]) * 255.0 color[segm_mask <= 0] = np.array(self.color_map(0.0)[:3]) * 255.0 vector_colors = np.repeat(color[None], T, axis=0) # draw tracks if self.tracks_leave_trace != 0: for t in range(query_frame + 1, T): first_ind = ( max(0, t - self.tracks_leave_trace) if self.tracks_leave_trace >= 0 else 0 ) curr_tracks = tracks[first_ind : t + 1] curr_colors = vector_colors[first_ind : t + 1] if compensate_for_camera_motion: diff = ( tracks[first_ind : t + 1, segm_mask <= 0] - tracks[t : t + 1, segm_mask <= 0] ).mean(1)[:, None] curr_tracks = curr_tracks - diff curr_tracks = curr_tracks[:, segm_mask > 0] curr_colors = curr_colors[:, segm_mask > 0] res_video[t] = self._draw_pred_tracks( res_video[t], curr_tracks, curr_colors, ) if gt_tracks is not None: res_video[t] = self._draw_gt_tracks(res_video[t], gt_tracks[first_ind : t + 1]) # draw points for t in range(query_frame, T): img = Image.fromarray(np.uint8(res_video[t])) for i in range(N): coord = (tracks[t, i, 0], tracks[t, i, 1]) visibile = True if visibility is not None: visibile = visibility[0, t, i] if coord[0] != 0 and coord[1] != 0: if not compensate_for_camera_motion or ( compensate_for_camera_motion and segm_mask[i] > 0 ): img = draw_circle( img, coord=coord, radius=int(self.linewidth * 2), color=vector_colors[t, i].astype(int), visible=visibile, ) res_video[t] = np.array(img) # construct the final rgb sequence if self.show_first_frame > 0: res_video = [res_video[0]] * self.show_first_frame + res_video[1:] return torch.from_numpy(np.stack(res_video)).permute(0, 3, 1, 2)[None].byte() def _draw_pred_tracks( self, rgb: np.ndarray, # H x W x 3 tracks: np.ndarray, # T x 2 vector_colors: np.ndarray, alpha: float = 0.5, ): T, N, _ = tracks.shape rgb = Image.fromarray(np.uint8(rgb)) for s in range(T - 1): vector_color = vector_colors[s] original = rgb.copy() alpha = (s / T) ** 2 for i in range(N): coord_y = (int(tracks[s, i, 0]), int(tracks[s, i, 1])) coord_x = (int(tracks[s + 1, i, 0]), int(tracks[s + 1, i, 1])) if coord_y[0] != 0 and coord_y[1] != 0: rgb = draw_line( rgb, coord_y, coord_x, vector_color[i].astype(int), self.linewidth, ) if self.tracks_leave_trace > 0: rgb = Image.fromarray( np.uint8(add_weighted(np.array(rgb), alpha, np.array(original), 1 - alpha, 0)) ) rgb = np.array(rgb) return rgb def _draw_gt_tracks( self, rgb: np.ndarray, # H x W x 3, gt_tracks: np.ndarray, # T x 2 ): T, N, _ = gt_tracks.shape color = np.array((211, 0, 0)) rgb = Image.fromarray(np.uint8(rgb)) for t in range(T): for i in range(N): gt_tracks = gt_tracks[t][i] # draw a red cross if gt_tracks[0] > 0 and gt_tracks[1] > 0: length = self.linewidth * 3 coord_y = (int(gt_tracks[0]) + length, int(gt_tracks[1]) + length) coord_x = (int(gt_tracks[0]) - length, int(gt_tracks[1]) - length) rgb = draw_line( rgb, coord_y, coord_x, color, self.linewidth, ) coord_y = (int(gt_tracks[0]) - length, int(gt_tracks[1]) + length) coord_x = (int(gt_tracks[0]) + length, int(gt_tracks[1]) - length) rgb = draw_line( rgb, coord_y, coord_x, color, self.linewidth, ) rgb = np.array(rgb) return rgb