|
import os |
|
import torch |
|
import random |
|
from PIL import Image |
|
|
|
import gradio as gr |
|
from glob import glob |
|
from omegaconf import OmegaConf |
|
from safetensors import safe_open |
|
|
|
from diffusers import AutoencoderKL |
|
from diffusers import EulerDiscreteScheduler, DDIMScheduler |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from animatediff.models.unet import UNet3DConditionModel |
|
from animatediff.pipelines.pipeline_animation import AnimationPipeline |
|
from animatediff.utils.util import save_videos_grid |
|
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint |
|
|
|
|
|
pretrained_model_path = "models/StableDiffusion/stable-diffusion-v1-5" |
|
inference_config_path = "configs/inference/inference.yaml" |
|
|
|
css = """ |
|
.toolbutton { |
|
margin-buttom: 0em 0em 0em 0em; |
|
max-width: 2.5em; |
|
min-width: 2.5em !important; |
|
height: 2.5em; |
|
} |
|
""" |
|
|
|
examples = [ |
|
|
|
[ |
|
"toonyou_beta3.safetensors", |
|
"mm_sd_v14.ckpt", |
|
"masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes", |
|
"worst quality, low quality, nsfw, logo", |
|
512, 512, "13204175718326964000" |
|
], |
|
|
|
[ |
|
"lyriel_v16.safetensors", |
|
"mm_sd_v15.ckpt", |
|
"A forbidden castle high up in the mountains, pixel art, intricate details2, hdr, intricate details, hyperdetailed5, natural skin texture, hyperrealism, soft light, sharp, game art, key visual, surreal", |
|
"3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, girl, loli, young, large breasts, red eyes, muscular", |
|
512, 512, "6681501646976930000" |
|
], |
|
|
|
[ |
|
"rcnzCartoon3d_v10.safetensors", |
|
"mm_sd_v14.ckpt", |
|
"Jane Eyre with headphones, natural skin texture,4mm,k textures, soft cinematic light, adobe lightroom, photolab, hdr, intricate, elegant, highly detailed, sharp focus, cinematic look, soothing tones, insane details, intricate details, hyperdetailed, low contrast, soft cinematic light, dim colors, exposure blend, hdr, faded", |
|
"deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", |
|
512, 512, "2416282124261060" |
|
], |
|
|
|
[ |
|
"majicmixRealistic_v5Preview.safetensors", |
|
"mm_sd_v14.ckpt", |
|
"1girl, offshoulder, light smile, shiny skin best quality, masterpiece, photorealistic", |
|
"bad hand, worst quality, low quality, normal quality, lowres, bad anatomy, bad hands, watermark, moles", |
|
512, 512, "7132772652786303" |
|
], |
|
|
|
[ |
|
"realisticVisionV20_v20.safetensors", |
|
"mm_sd_v15.ckpt", |
|
"photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3", |
|
"blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation", |
|
512, 512, "1490157606650685400" |
|
] |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"### Cleaning cached examples ...") |
|
os.system(f"rm -rf gradio_cached_examples/") |
|
|
|
|
|
class AnimateController: |
|
def __init__(self): |
|
|
|
|
|
self.basedir = os.getcwd() |
|
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion") |
|
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module") |
|
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA") |
|
self.savedir = os.path.join(self.basedir, "samples") |
|
os.makedirs(self.savedir, exist_ok=True) |
|
|
|
self.base_model_list = [] |
|
self.motion_module_list = [] |
|
|
|
self.selected_base_model = None |
|
self.selected_motion_module = None |
|
|
|
self.refresh_motion_module() |
|
self.refresh_personalized_model() |
|
|
|
|
|
self.inference_config = OmegaConf.load(inference_config_path) |
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") |
|
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda() |
|
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda() |
|
self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda() |
|
|
|
self.update_base_model(self.base_model_list[0]) |
|
self.update_motion_module(self.motion_module_list[0]) |
|
|
|
|
|
def refresh_motion_module(self): |
|
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt")) |
|
self.motion_module_list = [os.path.basename(p) for p in motion_module_list] |
|
|
|
def refresh_personalized_model(self): |
|
base_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors")) |
|
self.base_model_list = [os.path.basename(p) for p in base_model_list] |
|
|
|
|
|
def update_base_model(self, base_model_dropdown): |
|
self.selected_base_model = base_model_dropdown |
|
|
|
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown) |
|
base_model_state_dict = {} |
|
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f: |
|
for key in f.keys(): base_model_state_dict[key] = f.get_tensor(key) |
|
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config) |
|
self.vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config) |
|
self.unet.load_state_dict(converted_unet_checkpoint, strict=False) |
|
|
|
self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict) |
|
return gr.Dropdown.update() |
|
|
|
def update_motion_module(self, motion_module_dropdown): |
|
self.selected_motion_module = motion_module_dropdown |
|
|
|
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown) |
|
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu") |
|
_, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False) |
|
assert len(unexpected) == 0 |
|
return gr.Dropdown.update() |
|
|
|
|
|
|
|
|
|
|
|
def animate( |
|
self, |
|
base_model_dropdown, |
|
motion_module_dropdown, |
|
prompt_textbox, |
|
init_image, |
|
negative_prompt_textbox, |
|
width_slider, |
|
height_slider, |
|
seed_textbox, |
|
): |
|
if self.selected_base_model != base_model_dropdown: self.update_base_model(base_model_dropdown) |
|
if self.selected_motion_module != motion_module_dropdown: self.update_motion_module(motion_module_dropdown) |
|
|
|
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention() |
|
|
|
pipeline = AnimationPipeline( |
|
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, |
|
scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs)) |
|
).to("cuda") |
|
|
|
if int(seed_textbox) > 0: seed = int(seed_textbox) |
|
else: seed = random.randint(1, 1e16) |
|
torch.manual_seed(int(seed)) |
|
|
|
assert seed == torch.initial_seed() |
|
print(f"### seed: {seed}") |
|
|
|
generator = torch.Generator(device="cuda") |
|
generator.manual_seed(seed) |
|
|
|
|
|
|
|
image = Image.open(init_image).convert("RGB") |
|
|
|
|
|
image.resize((512, 512)) |
|
|
|
|
|
image.save("resized.jpg") |
|
|
|
sample = pipeline( |
|
prompt_textbox, |
|
init_image = "resized.jpg", |
|
negative_prompt = negative_prompt_textbox, |
|
num_inference_steps = 25, |
|
guidance_scale = 8., |
|
width = width_slider, |
|
height = height_slider, |
|
video_length = 16, |
|
generator = generator, |
|
).videos |
|
|
|
save_sample_path = os.path.join(self.savedir, f"sample.mp4") |
|
save_videos_grid(sample, save_sample_path) |
|
|
|
json_config = { |
|
"prompt": prompt_textbox, |
|
"n_prompt": negative_prompt_textbox, |
|
"width": width_slider, |
|
"height": height_slider, |
|
"seed": seed, |
|
"base_model": base_model_dropdown, |
|
"motion_module": motion_module_dropdown, |
|
} |
|
return gr.Video.update(value=save_sample_path), gr.Json.update(value=json_config) |
|
|
|
|
|
controller = AnimateController() |
|
|
|
|
|
def ui(): |
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown( |
|
""" |
|
# AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning |
|
Yuwei Guo, Ceyuan Yang*, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai (*Corresponding Author)<br> |
|
[Arxiv Report](https://arxiv.org/abs/2307.04725) | [Project Page](https://animatediff.github.io/) | [Github](https://github.com/guoyww/animatediff/) |
|
""" |
|
) |
|
gr.Markdown( |
|
""" |
|
### Quick Start |
|
1. Select desired `Base DreamBooth Model`. |
|
2. Select `Motion Module` from `mm_sd_v14.ckpt` and `mm_sd_v15.ckpt`. We recommend trying both of them for the best results. |
|
3. Provide `Prompt` and `Negative Prompt` for each model. You are encouraged to refer to each model's webpage on CivitAI to learn how to write prompts for them. Below are the DreamBooth models in this demo. Click to visit their homepage. |
|
- [`toonyou_beta3.safetensors`](https://civitai.com/models/30240?modelVersionId=78775) |
|
- [`lyriel_v16.safetensors`](https://civitai.com/models/22922/lyriel) |
|
- [`rcnzCartoon3d_v10.safetensors`](https://civitai.com/models/66347?modelVersionId=71009) |
|
- [`majicmixRealistic_v5Preview.safetensors`](https://civitai.com/models/43331?modelVersionId=79068) |
|
- [`realisticVisionV20_v20.safetensors`](https://civitai.com/models/4201?modelVersionId=29460) |
|
4. Click `Generate`, wait for ~1 min, and enjoy. |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
base_model_dropdown = gr.Dropdown( label="Base DreamBooth Model", choices=controller.base_model_list, value=controller.base_model_list[0], interactive=True ) |
|
motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True ) |
|
|
|
base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown]) |
|
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown]) |
|
|
|
init_image = gr.Image(label="Init Image", source="upload", type="filepath") |
|
|
|
prompt_textbox = gr.Textbox( label="Prompt", lines=3 ) |
|
negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo") |
|
|
|
with gr.Accordion("Advance", open=False): |
|
with gr.Row(): |
|
width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 ) |
|
height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 ) |
|
with gr.Row(): |
|
seed_textbox = gr.Textbox( label="Seed", value=-1) |
|
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") |
|
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox]) |
|
|
|
generate_button = gr.Button( value="Generate", variant='primary' ) |
|
|
|
with gr.Column(): |
|
result_video = gr.Video( label="Generated Animation", interactive=False ) |
|
json_config = gr.Json( label="Config", value=None ) |
|
|
|
inputs = [base_model_dropdown, motion_module_dropdown, prompt_textbox, init_image, negative_prompt_textbox, width_slider, height_slider, seed_textbox] |
|
outputs = [result_video, json_config] |
|
|
|
generate_button.click( fn=controller.animate, inputs=inputs, outputs=outputs ) |
|
|
|
|
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
demo = ui() |
|
demo.queue(max_size=20) |
|
demo.launch() |
|
|