File size: 10,926 Bytes
a71cef1
536d153
f87d76f
 
 
7af6efa
536d153
 
 
 
45d0a31
3f1e323
67d94fb
 
 
40810f3
67d94fb
f86f2f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536d153
 
 
 
 
 
 
 
 
 
 
 
0adf250
536d153
 
 
 
 
 
 
0adf250
536d153
 
 
 
 
 
 
 
 
 
 
 
 
3134aee
ac813bc
3b3533f
 
ac813bc
777940d
ac813bc
fd52df0
ac813bc
 
 
 
 
777940d
ac813bc
fd52df0
ac813bc
 
 
 
 
 
 
eb7ac3e
3134aee
 
 
 
 
 
 
 
 
 
fd11666
eb7ac3e
 
 
 
 
 
 
 
 
e96f8bf
536d153
 
 
fd11666
e96f8bf
536d153
 
e96f8bf
 
 
 
97a751a
0c95e8a
 
536d153
 
 
 
e497cba
536d153
45d0a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fca308
 
 
536d153
 
 
 
 
 
 
 
 
 
45d0a31
 
 
1fca308
45d0a31
1fca308
45d0a31
 
1fca308
45d0a31
 
 
 
 
 
 
 
536d153
3629c9d
536d153
 
eb7ac3e
ac813bc
f86f2f4
 
 
 
 
 
 
 
 
 
536d153
ac813bc
 
 
536d153
 
 
 
 
 
 
 
 
 
 
 
df317e7
536d153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40810f3
536d153
 
 
 
 
 
 
40810f3
536d153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac813bc
 
 
 
 
 
536d153
 
3134aee
0c95e8a
536d153
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import spaces
import gradio as gr
import os
import numpy as np
import random
from huggingface_hub import login, ModelCard
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from blora_utils import BLOCKS, filter_lora, scale_lora

is_shared_ui = True if "fffiloni/B-LoRa-Inference" in os.environ['SPACE_ID'] else False
hf_token = os.environ.get("YOUR_HF_TOKEN_WITH_READ_PERMISSION")
login(token=hf_token)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

SAMPLE_MODEL_IDS = [
    'lora-library/B-LoRA-teddybear',
    'lora-library/B-LoRA-bull',
    'lora-library/B-LoRA-wolf_plushie',
    'lora-library/B-LoRA-pen_sketch',
    'lora-library/B-LoRA-cartoon_line',
    'lora-library/B-LoRA-child',
    'lora-library/B-LoRA-vase',
    'lora-library/B-LoRA-scary_mug',
    'lora-library/B-LoRA-statue',
    'lora-library/B-LoRA-colorful_teapot',
    'lora-library/B-LoRA-grey_sloth_plushie',
    'lora-library/B-LoRA-teapot',
    'lora-library/B-LoRA-backpack_dog',
    'lora-library/B-LoRA-buddha',
    'lora-library/B-LoRA-dog6',
    'lora-library/B-LoRA-poop_emoji',
    'lora-library/B-LoRA-pot',
    'lora-library/B-LoRA-fat_bird',
    'lora-library/B-LoRA-elephant',
    'lora-library/B-LoRA-metal_bird',
    'lora-library/B-LoRA-cat',
    'lora-library/B-LoRA-dog2',
    'lora-library/B-LoRA-drawing1',
    'lora-library/B-LoRA-village_oil',
    'lora-library/B-LoRA-watercolor',
    'lora-library/B-LoRA-house_3d',
    'lora-library/B-LoRA-ink_sketch',
    'lora-library/B-LoRA-drawing3',
    'lora-library/B-LoRA-crayon_drawing',
    'lora-library/B-LoRA-kiss',
    'lora-library/B-LoRA-drawing4',
    'lora-library/B-LoRA-working_cartoon',
    'lora-library/B-LoRA-painting',
    'lora-library/B-LoRA-drawing2'
    'lora-library/B-LoRA-multi-dog2',
]

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = StableDiffusionXLPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        vae=vae,
        torch_dtype=torch.float16,
    ).to("cuda")

def load_b_lora_to_unet(pipe, content_lora_model_id: str = '', style_lora_model_id: str = '', content_alpha: float = 1.,
                            style_alpha: float = 1.) -> None:
        try:
            # Get Content B-LoRA SD
            if content_lora_model_id:
                content_B_LoRA_sd, _ = pipe.lora_state_dict(content_lora_model_id, use_auth_token=True)
                content_B_LoRA = filter_lora(content_B_LoRA_sd, BLOCKS['content'])
                content_B_LoRA = scale_lora(content_B_LoRA, content_alpha)
            else:
                content_B_LoRA = {}

            # Get Style B-LoRA SD
            if style_lora_model_id:
                style_B_LoRA_sd, _ = pipe.lora_state_dict(style_lora_model_id, use_auth_token=True)
                style_B_LoRA = filter_lora(style_B_LoRA_sd, BLOCKS['style'])
                style_B_LoRA = scale_lora(style_B_LoRA, style_alpha)
            else:
                style_B_LoRA = {}

            # Merge B-LoRAs SD
            res_lora = {**content_B_LoRA, **style_B_LoRA}

            # Load
            pipe.load_lora_into_unet(res_lora, None, pipe.unet)
        except Exception as e:
            raise type(e)(f'failed to load_b_lora_to_unet, due to: {e}')


def load_b_loras(content_b_lora, style_b_lora):

    pipeline.unload_lora_weights()
    
    if content_b_lora != "" and content_b_lora is not None:
        # Get instance_prompt a.k.a trigger word
        content_model_card = ModelCard.load(content_b_lora)
        content_model_repo_data = content_model_card.data.to_dict()
        content_model_instance_prompt = content_model_repo_data.get("instance_prompt")
    else:
        content_model_instance_prompt = ''

    if style_b_lora != "" and style_b_lora is not None:
        # Get instance_prompt a.k.a trigger word
        style_model_card = ModelCard.load(style_b_lora)
        style_model_repo_data = style_model_card.data.to_dict()
        style_model_instance_prompt = style_model_repo_data.get("instance_prompt")
        style_model_instance_prompt = f"in {style_model_instance_prompt} style"
    else:
        style_model_instance_prompt = ''

    prepared_prompt = f"{content_model_instance_prompt} {style_model_instance_prompt}"

    
    return prepared_prompt

@spaces.GPU()
def main(content_b_lora, style_b_lora, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    if content_b_lora is None:
        content_B_LoRA_path = ''
    else:
        content_B_LoRA_path = content_b_lora

    if style_b_lora is None:
        style_B_LoRA_path = ''
    else:
        style_B_LoRA_path = style_b_lora
    
    content_alpha,style_alpha = 1,1.1

    load_b_lora_to_unet(pipeline, content_B_LoRA_path, style_B_LoRA_path, content_alpha, style_alpha)
    
    prompt = prompt
    image = pipeline(
        prompt,
        generator=generator, 
        num_images_per_prompt=1,
        width = width, 
        height = height,
    ).images[0]
    
    return image, seed

css="""
#col-container {
    margin: 0 auto;
    max-width: 720px;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
.custom-color {
    color: #030303 !important;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Note: you might want to use a private custom B-LoRa model</h2>
                    <p class="main-message custom-color">
                        To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br />
                    </p>
                    <p class="actions custom-color">
                        <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                        to start using private models and skip the queue
                    </p>
                </div>
            ''', elem_id="warning-duplicate")
        
        gr.Markdown(f"""
        # B-LoRas Inference
        Currently running on {power_device}.
        """)

        with gr.Row():    
            content_b_lora = gr.Dropdown(
                label="B-LoRa for content", 
                allow_custom_value=True,
                choices=SAMPLE_MODEL_IDS
            )
            style_b_lora = gr.Dropdown(
                label="B-LoRa for style", 
                allow_custom_value=True,
                choices=SAMPLE_MODEL_IDS
            )
        
        with gr.Column():
            load_b_loras_btn = gr.Button("load models")
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False, format="png")

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=50,
                )

    load_b_loras_btn.click(
        fn = load_b_loras,
        inputs = [content_b_lora, style_b_lora],
        outputs = [prompt]
    )
    
    run_button.click(
        fn = main,
        inputs = [content_b_lora, style_b_lora, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.queue().launch()