File size: 2,855 Bytes
653ce35
7ca5351
c93a0cb
 
 
 
454eedf
39489bd
0cbec0b
acf84db
 
 
 
 
 
 
 
 
 
3a66e37
 
12c01c3
c05f3f8
 
12c01c3
 
 
 
c05f3f8
12c01c3
3a66e37
7d319ce
c93a0cb
 
 
39489bd
618e51c
12c01c3
6fcb174
 
6a87ed0
c93a0cb
cc3607e
6a87ed0
 
 
 
 
07f7f7b
618e51c
 
 
 
 
de1d7d7
c93a0cb
de1d7d7
 
c93a0cb
de1d7d7
454eedf
de1d7d7
454eedf
7ca5351
 
 
 
 
 
 
39489bd
7ca5351
79917e9
 
12c01c3
 
 
 
39489bd
7ca5351
0269ee9
 
39489bd
0269ee9
eaf8a3c
106f93a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import os
import subprocess
import cv2
from moviepy.editor import VideoFileClip, concatenate_videoclips
import math

from huggingface_hub import snapshot_download

model_ids = [
    'runwayml/stable-diffusion-v1-5',
    'lllyasviel/sd-controlnet-depth', 
    'lllyasviel/sd-controlnet-canny', 
    'lllyasviel/sd-controlnet-openpose',
]
for model_id in model_ids:
    model_name = model_id.split('/')[-1]
    snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')



def get_frame_count_in_duration(filepath):
    video = cv2.VideoCapture(filepath)
    fps = video.get(cv2.CAP_PROP_FPS)
    frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    duration = frame_count / fps
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    video.release()
    return gr.update(maximum=frame_count)





def run_inference(prompt, video_path, condition, video_length):

    
    output_path = 'output/'
    os.makedirs(output_path, exist_ok=True)

    # Construct the final video path
    video_path_output = os.path.join(output_path, f"{prompt}.mp4")

    # Check if the file already exists
    if os.path.exists(video_path_output):
        # Delete the existing file
        os.remove(video_path_output)

    if video_length > 12:
        command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length}"
    else:
        command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length} --is_long_video"

    subprocess.run(command, shell=True)

    # Construct the video path
    video_path_output = os.path.join(output_path, f"{prompt}.mp4")

        

    return "done", video_path_output 


with gr.Blocks() as demo:
    with gr.Column():
        prompt = gr.Textbox(label="prompt")
        video_path = gr.Video(source="upload", type="filepath")
        condition = gr.Textbox(label="Condition", value="depth")
        video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
        #seed = gr.Number(label="seed", value=42)
        submit_btn = gr.Button("Submit")
        video_res = gr.Video(label="result")
        status = gr.Textbox(label="result")
    video_path.change(fn=get_frame_count_in_duration,
                      inputs=[video_path],
                      outputs=[video_length]
                     )
    submit_btn.click(fn=run_inference, 
                     inputs=[prompt,
                             video_path,
                             condition,
                             video_length
                            ],
                    outputs=[status, video_res])

demo.queue(max_size=12).launch()