Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -19,15 +19,11 @@ for model_id in model_ids:
|
|
19 |
|
20 |
|
21 |
|
22 |
-
def
|
23 |
-
video = cv2.VideoCapture(filepath)
|
24 |
-
fps = video.get(cv2.CAP_PROP_FPS)
|
25 |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
26 |
-
duration = frame_count / fps
|
27 |
-
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
28 |
-
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
29 |
video.release()
|
30 |
-
return gr.update(
|
31 |
|
32 |
def get_video_dimension(filepath):
|
33 |
video = cv2.VideoCapture(filepath)
|
@@ -38,40 +34,17 @@ def get_video_dimension(filepath):
|
|
38 |
video.release()
|
39 |
return width, height, fps, frame_count
|
40 |
|
41 |
-
def
|
42 |
-
remainder = number % 12
|
43 |
-
if remainder != 0:
|
44 |
-
adjustment = 12 - remainder
|
45 |
-
number += adjustment
|
46 |
-
return number
|
47 |
-
|
48 |
-
def resize_video(input_file):
|
49 |
-
# Load the video clip
|
50 |
-
clip = VideoFileClip(input_file)
|
51 |
-
print(f"WIDTH TARGET: 512")
|
52 |
-
# Calculate the aspect ratio
|
53 |
-
ratio = 512 / clip.size[0]
|
54 |
-
new_height = int(clip.size[1] * ratio)
|
55 |
-
new_height_adjusted = adjust_to_multiple_of_12(new_height)
|
56 |
-
new_width_adjusted = adjust_to_multiple_of_12(512)
|
57 |
-
print(f"OLD H: {new_height} | NEW H: {new_height_adjusted}")
|
58 |
-
print(f"OLD W: 512 | NEW W: {new_width_adjusted}")
|
59 |
-
|
60 |
-
# Close the video clip
|
61 |
-
clip.close()
|
62 |
-
|
63 |
# Open the input video file
|
64 |
-
video = cv2.VideoCapture(
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Create a VideoWriter object to write the resized video
|
67 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
|
68 |
-
|
69 |
-
# Check if the file already exists
|
70 |
-
if os.path.exists('video_resized.mp4'):
|
71 |
-
# Delete the existing file
|
72 |
-
os.remove('video_resized.mp4')
|
73 |
-
|
74 |
-
output_video = cv2.VideoWriter('video_resized.mp4', fourcc, 8.0, (512, 512))
|
75 |
|
76 |
while True:
|
77 |
# Read a frame from the input video
|
@@ -80,7 +53,7 @@ def resize_video(input_file):
|
|
80 |
break
|
81 |
|
82 |
# Resize the frame to the desired dimensions
|
83 |
-
resized_frame = cv2.resize(frame, (
|
84 |
|
85 |
# Write the resized frame to the output video file
|
86 |
output_video.write(resized_frame)
|
@@ -89,56 +62,62 @@ def resize_video(input_file):
|
|
89 |
video.release()
|
90 |
output_video.release()
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
#final_video_resized = os.path.join(temp_output_path, 'video_resized.mp4')
|
95 |
-
test_w, test_h, fps, frame_count = get_video_dimension('video_resized.mp4')
|
96 |
-
print(f"resized clip dims : {test_w}, {test_h}, {fps}")
|
97 |
-
return gr.update(visible=False), gr.update(value='video_resized.mp4', visible=True), gr.update(maximum=frame_count)
|
98 |
-
|
99 |
-
def run_inference(prompt, video_path, condition, video_length):
|
100 |
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
# Delete the existing file
|
110 |
-
os.remove(video_path_output)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
subprocess.run(command, shell=True)
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
|
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
|
|
126 |
|
127 |
-
#
|
128 |
-
|
129 |
-
resized_vid = 'resized.mp4'
|
130 |
|
131 |
-
# Call the function to resize the video
|
132 |
-
video_path = resize_video(input_vid, resized_vid, width=512)
|
133 |
-
width, height, fps = get_video_dimension(video_path)
|
134 |
|
135 |
-
print(f"{width} x {height} | {fps}")
|
136 |
|
137 |
-
# Split the video into chunks mp4 of 12 frames at video fps
|
138 |
-
# Store chunks as mp4 paths in an array
|
139 |
|
140 |
-
# For each mp4 chunks in chunks arrays, run command
|
141 |
-
# store video result in processed chunks array
|
142 |
|
143 |
output_path = 'output/'
|
144 |
os.makedirs(output_path, exist_ok=True)
|
@@ -152,18 +131,18 @@ def run_inference_chunks(prompt, video_path, condition, video_length):
|
|
152 |
os.remove(video_path_output)
|
153 |
|
154 |
if video_length > 12:
|
155 |
-
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width
|
156 |
else:
|
157 |
-
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width
|
158 |
subprocess.run(command, shell=True)
|
159 |
|
160 |
# Construct the video path
|
161 |
video_path_output = os.path.join(output_path, f"{prompt}.mp4")
|
162 |
|
163 |
-
|
164 |
-
|
165 |
return "done", video_path_output
|
166 |
|
|
|
|
|
167 |
css="""
|
168 |
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;}
|
169 |
"""
|
@@ -174,8 +153,8 @@ with gr.Blocks(css=css) as demo:
|
|
174 |
""")
|
175 |
with gr.Row():
|
176 |
with gr.Column():
|
177 |
-
video_in = gr.Video(source="upload", type="filepath", visible=True)
|
178 |
-
video_path = gr.Video(source="upload", type="filepath", visible=
|
179 |
prompt = gr.Textbox(label="prompt")
|
180 |
with gr.Row():
|
181 |
condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth")
|
@@ -185,9 +164,9 @@ with gr.Blocks(css=css) as demo:
|
|
185 |
with gr.Column():
|
186 |
video_res = gr.Video(label="result")
|
187 |
status = gr.Textbox(label="result")
|
188 |
-
|
189 |
-
inputs=[
|
190 |
-
outputs=[
|
191 |
)
|
192 |
submit_btn.click(fn=run_inference,
|
193 |
inputs=[prompt,
|
|
|
19 |
|
20 |
|
21 |
|
22 |
+
def get_frame_count(filepath):
|
23 |
+
video = cv2.VideoCapture(filepath)
|
|
|
24 |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
25 |
video.release()
|
26 |
+
return gr.update(maximum=frame_count)
|
27 |
|
28 |
def get_video_dimension(filepath):
|
29 |
video = cv2.VideoCapture(filepath)
|
|
|
34 |
video.release()
|
35 |
return width, height, fps, frame_count
|
36 |
|
37 |
+
def resize_video(input_vid, output_vid, width, height, fps):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Open the input video file
|
39 |
+
video = cv2.VideoCapture(input_vid)
|
40 |
+
|
41 |
+
# Get the original video's width and height
|
42 |
+
original_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
43 |
+
original_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
44 |
|
45 |
# Create a VideoWriter object to write the resized video
|
46 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
|
47 |
+
output_video = cv2.VideoWriter(output_vid, fourcc, fps, (width, height))
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
while True:
|
50 |
# Read a frame from the input video
|
|
|
53 |
break
|
54 |
|
55 |
# Resize the frame to the desired dimensions
|
56 |
+
resized_frame = cv2.resize(frame, (width, height))
|
57 |
|
58 |
# Write the resized frame to the output video file
|
59 |
output_video.write(resized_frame)
|
|
|
62 |
video.release()
|
63 |
output_video.release()
|
64 |
|
65 |
+
return output_vid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
def chunkify(video_path, fps, nb_frames):
|
68 |
+
chunks_array = []
|
69 |
|
70 |
+
video_capture = cv2.VideoCapture(video_path)
|
71 |
+
chunk_start_frame = 0
|
72 |
+
frames_per_chunk = 12
|
73 |
|
74 |
+
while chunk_start_frame < nb_frames:
|
75 |
+
chunk_end_frame = min(chunk_start_frame + frames_per_chunk, total_frames)
|
|
|
|
|
76 |
|
77 |
+
video_capture.set(cv2.CAP_PROP_POS_FRAMES, chunk_start_frame)
|
78 |
+
success, frame = video_capture.read()
|
79 |
+
if not success:
|
80 |
+
break
|
|
|
81 |
|
82 |
+
chunk_name = f"chunk_{chunk_start_frame}-{chunk_end_frame}.mp4"
|
83 |
+
chunk_video = cv2.VideoWriter(chunk_name, cv2.VideoWriter_fourcc(*"mp4v"), fps, (frame.shape[1], frame.shape[0]))
|
84 |
+
|
85 |
+
for frame_number in range(chunk_start_frame, chunk_end_frame):
|
86 |
+
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
87 |
+
success, frame = video_capture.read()
|
88 |
+
if not success:
|
89 |
+
break
|
90 |
+
|
91 |
+
chunk_video.write(frame)
|
92 |
+
|
93 |
+
chunk_video.release()
|
94 |
+
chunks_array.append(chunk_name)
|
95 |
|
96 |
+
chunk_start_frame += frames_per_chunk
|
97 |
+
|
98 |
+
video_capture.release()
|
99 |
+
print(f"CHUNKS: {chunks_array}")
|
100 |
+
return chunks_array
|
101 |
+
|
102 |
|
103 |
+
def run_inference(prompt, video_path, condition, video_length):
|
104 |
|
105 |
+
# Get FPS of original video input
|
106 |
+
target_fps = get_video_dimension(video_path)[2]
|
107 |
+
print(f"INPUT FPS: {target_fps}")
|
108 |
+
|
109 |
+
# Count total frames according to fps
|
110 |
+
total_frames = get_video_dimension(video_path)[3]
|
111 |
|
112 |
+
# Resize the video
|
113 |
+
resized = resize_video(video_path, 'resized.mp4', 512, 512, target_fps)
|
114 |
|
115 |
+
# Chunkify the video into 12 frames chunks
|
116 |
+
chunks = chunkify(resized, target_fps, total_frames)
|
|
|
117 |
|
|
|
|
|
|
|
118 |
|
|
|
119 |
|
|
|
|
|
120 |
|
|
|
|
|
121 |
|
122 |
output_path = 'output/'
|
123 |
os.makedirs(output_path, exist_ok=True)
|
|
|
131 |
os.remove(video_path_output)
|
132 |
|
133 |
if video_length > 12:
|
134 |
+
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width 512 --height 512 --fps 8 --video_length {video_length} --is_long_video"
|
135 |
else:
|
136 |
+
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width 512 --height 512 --fps 8 --video_length {video_length}"
|
137 |
subprocess.run(command, shell=True)
|
138 |
|
139 |
# Construct the video path
|
140 |
video_path_output = os.path.join(output_path, f"{prompt}.mp4")
|
141 |
|
|
|
|
|
142 |
return "done", video_path_output
|
143 |
|
144 |
+
|
145 |
+
|
146 |
css="""
|
147 |
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;}
|
148 |
"""
|
|
|
153 |
""")
|
154 |
with gr.Row():
|
155 |
with gr.Column():
|
156 |
+
#video_in = gr.Video(source="upload", type="filepath", visible=True)
|
157 |
+
video_path = gr.Video(source="upload", type="filepath", visible=True)
|
158 |
prompt = gr.Textbox(label="prompt")
|
159 |
with gr.Row():
|
160 |
condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth")
|
|
|
164 |
with gr.Column():
|
165 |
video_res = gr.Video(label="result")
|
166 |
status = gr.Textbox(label="result")
|
167 |
+
video_path.change(fn=get_frame_count,
|
168 |
+
inputs=[video_path],
|
169 |
+
outputs=[video_length]
|
170 |
)
|
171 |
submit_btn.click(fn=run_inference,
|
172 |
inputs=[prompt,
|