Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ hf_token = os.environ.get('HF_TOKEN')
|
|
28 |
device = "cuda"
|
29 |
|
30 |
#snapshot_download("runwayml/stable-diffusion-v1-5", cache_dir="checkpoints")
|
31 |
-
sd_path = "
|
32 |
inter_path = "checkpoints/flownet.pkl"
|
33 |
controlnet_dict = {
|
34 |
"pose": "checkpoints/sd-controlnet-openpose",
|
@@ -89,8 +89,8 @@ def infer(prompt, video_path, condition, video_length, is_long_video):
|
|
89 |
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
|
90 |
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
|
91 |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
|
92 |
-
unet = UNet3DConditionModel.
|
93 |
-
controlnet = ControlNetModel3D.
|
94 |
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
|
95 |
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
96 |
|
@@ -150,7 +150,7 @@ with gr.Blocks() as demo:
|
|
150 |
video_path = gr.Video(source="upload", type="filepath")
|
151 |
condition = gr.Textbox(label="Condition", value="depth")
|
152 |
video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
|
153 |
-
seed = gr.Number(label="seed",
|
154 |
submit_btn = gr.Button("Submit")
|
155 |
video_res = gr.Video(label="result")
|
156 |
|
|
|
28 |
device = "cuda"
|
29 |
|
30 |
#snapshot_download("runwayml/stable-diffusion-v1-5", cache_dir="checkpoints")
|
31 |
+
sd_path = "checkpoints/stable-diffusion-v1-5"
|
32 |
inter_path = "checkpoints/flownet.pkl"
|
33 |
controlnet_dict = {
|
34 |
"pose": "checkpoints/sd-controlnet-openpose",
|
|
|
89 |
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
|
90 |
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
|
91 |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
|
92 |
+
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
|
93 |
+
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[condition]).to(dtype=torch.float16)
|
94 |
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
|
95 |
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
96 |
|
|
|
150 |
video_path = gr.Video(source="upload", type="filepath")
|
151 |
condition = gr.Textbox(label="Condition", value="depth")
|
152 |
video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
|
153 |
+
seed = gr.Number(label="seed", value=42)
|
154 |
submit_btn = gr.Button("Submit")
|
155 |
video_res = gr.Video(label="result")
|
156 |
|