fffiloni commited on
Commit
a4ad89d
·
1 Parent(s): ee7f37b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -15
app.py CHANGED
@@ -111,7 +111,7 @@ def normalize_and_save_video(input_video_path, output_video_path):
111
 
112
 
113
 
114
- def run_inference(prompt, video_path, condition, video_length, seed):
115
 
116
  seed = math.floor(seed)
117
 
@@ -141,21 +141,24 @@ def run_inference(prompt, video_path, condition, video_length, seed):
141
 
142
  print(f"RUNNING INFERENCE ...")
143
  if video_length > 12:
144
- command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{normalized}' --output_path '{output_path}' --temp_chunk_path 'result' --width 512 --height 512 --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 10 12 --is_long_video"
145
  else:
146
- command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{normalized}' --output_path '{output_path}' --temp_chunk_path 'result' --width 512 --height 512 --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20"
147
- subprocess.run(command, shell=True)
 
148
 
149
- # Construct the video path
150
- video_path_output = os.path.join(output_path, f"result.mp4")
151
-
152
- # Resize to original video input size
153
- o_width = get_video_dimension(video_path)[0]
154
- o_height = get_video_dimension(video_path)[1]
155
- resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps)
156
-
157
- print(f"FINISHED !")
158
- return "done", 'resized_final.mp4'
 
 
159
 
160
 
161
 
@@ -177,6 +180,7 @@ with gr.Blocks(css=css) as demo:
177
  with gr.Row():
178
  condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth")
179
  seed = gr.Number(label="seed", value=42)
 
180
  submit_btn = gr.Button("Submit")
181
  with gr.Column():
182
  video_res = gr.Video(label="result")
@@ -191,7 +195,8 @@ with gr.Blocks(css=css) as demo:
191
  video_path,
192
  condition,
193
  video_length,
194
- seed
 
195
  ],
196
  outputs=[status, video_res])
197
 
 
111
 
112
 
113
 
114
+ def run_inference(prompt, video_path, condition, video_length, seed, steps):
115
 
116
  seed = math.floor(seed)
117
 
 
141
 
142
  print(f"RUNNING INFERENCE ...")
143
  if video_length > 12:
144
+ command = f"python inference.py --prompt '{prompt}' --inference_steps {steps} --condition '{condition}' --video_path '{normalized}' --output_path '{output_path}' --temp_chunk_path 'result' --width 512 --height 512 --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 10 12 --is_long_video"
145
  else:
146
+ command = f"python inference.py --prompt '{prompt}' --inference_steps {steps} --condition '{condition}' --video_path '{normalized}' --output_path '{output_path}' --temp_chunk_path 'result' --width 512 --height 512 --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20"
147
+ try:
148
+ subprocess.run(command, shell=True)
149
 
150
+ # Construct the video path
151
+ video_path_output = os.path.join(output_path, f"result.mp4")
152
+
153
+ # Resize to original video input size
154
+ o_width = get_video_dimension(video_path)[0]
155
+ o_height = get_video_dimension(video_path)[1]
156
+ resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps)
157
+
158
+ print(f"FINISHED !")
159
+ return "done", 'resized_final.mp4'
160
+ except:
161
+ return "error", None
162
 
163
 
164
 
 
180
  with gr.Row():
181
  condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth")
182
  seed = gr.Number(label="seed", value=42)
183
+ inference_steps = gr.Slider(label="Inference steps", minimum=12, maximum=50, step=1, value=25)
184
  submit_btn = gr.Button("Submit")
185
  with gr.Column():
186
  video_res = gr.Video(label="result")
 
195
  video_path,
196
  condition,
197
  video_length,
198
+ seed,
199
+ inference_steps
200
  ],
201
  outputs=[status, video_res])
202