|
import gradio as gr |
|
import requests |
|
import json |
|
|
|
import torch |
|
import torchaudio |
|
from einops import rearrange |
|
import argparse |
|
import json |
|
import os |
|
import spaces |
|
from tqdm import tqdm |
|
import random |
|
import numpy as np |
|
import sys |
|
import base64 |
|
from diffrhythm.infer.infer_utils import ( |
|
get_reference_latent, |
|
get_lrc_token, |
|
get_style_prompt, |
|
prepare_model, |
|
get_negative_style_prompt |
|
) |
|
from diffrhythm.infer.infer import inference |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
device='cuda' |
|
cfm, tokenizer, muq, vae = prepare_model(device) |
|
cfm = torch.compile(cfm) |
|
|
|
def infer_music(lrc, ref_audio_path, seed=42, randomize_seed=False, steps=32, file_type='wav', max_frames=2048, device='cuda'): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
torch.manual_seed(seed) |
|
sway_sampling_coef = -1 if steps < 32 else None |
|
lrc_prompt, start_time = get_lrc_token(lrc, tokenizer, device) |
|
style_prompt = get_style_prompt(muq, ref_audio_path) |
|
negative_style_prompt = get_negative_style_prompt(device) |
|
latent_prompt = get_reference_latent(device, max_frames) |
|
generated_song = inference(cfm_model=cfm, |
|
vae_model=vae, |
|
cond=latent_prompt, |
|
text=lrc_prompt, |
|
duration=max_frames, |
|
style_prompt=style_prompt, |
|
negative_style_prompt=negative_style_prompt, |
|
steps=steps, |
|
sway_sampling_coef=sway_sampling_coef, |
|
start_time=start_time, |
|
file_type=file_type |
|
) |
|
return generated_song |
|
|
|
import re |
|
from transformers import pipeline |
|
|
|
zephyr_model = "HuggingFaceH4/zephyr-7b-beta" |
|
mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
|
|
pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
def prepare_lyrics_with_llm(theme, tags, lyrics): |
|
|
|
language = "en" |
|
standard_sys = f""" |
|
Please generate a complete song with lyrics in {language}, following the {tags} style and centered around the theme "{theme}". If {lyrics} is provided, format it accordingly. If {lyrics} is None, generate original lyrics based on the given theme and style. Strictly adhere to the following requirements: |
|
|
|
### Mandatory Formatting Rules |
|
1. Only output the formatted lyrics—do not include any explanations, introductions, or additional messages. |
|
2. Only include timestamps and lyrics. Do not use brackets, side notes, or section markers (e.g., chorus, instrumental, outro). |
|
3. **Each line must start with a timestamp**, following the format [mm:ss.xx]Lyrics content, with no spaces between the timestamp and lyrics. The lyrics should be continuous and complete. |
|
4. The total song length must not exceed 1 minute 30 seconds. |
|
5. Timestamps should be naturally distributed. **The first lyric must not start at [00:00.00]**—there should always be an intro with no lyrics, and the first lyric should start around 8 to 10 seconds into the song. Do not start timestamps at [00:00.00]. |
|
6. The intro time should always be left blank (with no lyrics) before the first lyric, ensuring the song naturally begins after an intro section. |
|
7. **Every single line must begin with a timestamp.** No line should be missing a timestamp. |
|
|
|
### Prohibited Examples (Do Not Include) |
|
- Incorrect: [01:30.00](Piano solo) |
|
- Incorrect: [00:45.00][Chorus] |
|
- Incorrect: Lyrics without a timestamp at the beginning of the line. |
|
""" |
|
|
|
instruction = f""" |
|
<|system|> |
|
{standard_sys}</s> |
|
<|user|> |
|
theme: {theme} |
|
tags: {tags} |
|
lyrics: {lyrics} |
|
""" |
|
|
|
prompt = f"{instruction.strip()}</s>" |
|
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>' |
|
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL) |
|
|
|
print(f"SUGGESTED Lyrics: {cleaned_text}") |
|
return cleaned_text.lstrip("\n") |
|
|
|
from gradio_client import Client |
|
def generate_audio_ref(tags): |
|
|
|
client = Client("declare-lab/mustango") |
|
result = client.predict( |
|
prompt=tags, |
|
steps=200, |
|
guidance=3, |
|
api_name="/predict" |
|
) |
|
print(result) |
|
|
|
return result |
|
|
|
def general_process(theme, tags, lyrics): |
|
gr.Info("Generating Lyrics") |
|
lyrics_result = prepare_lyrics_with_llm(theme, tags, lyrics) |
|
|
|
gr.Info("Generating audio ref") |
|
audio_ref = generate_audio_ref(tags) |
|
|
|
if lyrics_result and audio_ref: |
|
gr.Info("Generating Song") |
|
generated_song = infer_music(lyrics_result, audio_ref) |
|
|
|
return audio_ref, lyrics_result, generated_song |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# Simpler Diff Rythm") |
|
|
|
theme_song = gr.Textbox(label="Theme") |
|
style_tags = gr.Textbox(label="Music style tags") |
|
lyrics = gr.Textbox(label="Lyrics optional") |
|
submit_btn = gr.Button("Submit") |
|
audio_ref = gr.Audio(label="Audio ref used") |
|
generated_lyrics = gr.Textbox(label="Generated Lyrics") |
|
song_result = gr.Audio(label="Your generated Song") |
|
|
|
submit_btn.click( |
|
fn = general_process, |
|
inputs = [theme_song, style_tags, lyrics], |
|
outputs = [audio_ref, generated_lyrics, song_result] |
|
) |
|
|
|
demo.queue().launch(show_api=False, show_error=True, ssr_mode=False) |