|
from __future__ import annotations |
|
|
|
import os |
|
import gc |
|
from tqdm import tqdm |
|
import wandb |
|
|
|
import torch |
|
from torch.optim import AdamW |
|
from torch.optim.lr_scheduler import LinearLR, SequentialLR, ConstantLR |
|
|
|
from accelerate import Accelerator |
|
from accelerate.utils import DistributedDataParallelKwargs |
|
from diffrhythm.dataset.custom_dataset_align2f5 import LanceDiffusionDataset |
|
|
|
from torch.utils.data import DataLoader, DistributedSampler |
|
|
|
from ema_pytorch import EMA |
|
|
|
from diffrhythm.model import CFM |
|
from diffrhythm.model.utils import exists, default |
|
|
|
import time |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Trainer: |
|
def __init__( |
|
self, |
|
model: CFM, |
|
args, |
|
epochs, |
|
learning_rate, |
|
|
|
num_warmup_updates=20000, |
|
save_per_updates=1000, |
|
checkpoint_path=None, |
|
batch_size=32, |
|
batch_size_type: str = "sample", |
|
max_samples=32, |
|
grad_accumulation_steps=1, |
|
max_grad_norm=1.0, |
|
noise_scheduler: str | None = None, |
|
duration_predictor: torch.nn.Module | None = None, |
|
wandb_project="test_e2-tts", |
|
wandb_run_name="test_run", |
|
wandb_resume_id: str = None, |
|
last_per_steps=None, |
|
accelerate_kwargs: dict = dict(), |
|
ema_kwargs: dict = dict(), |
|
bnb_optimizer: bool = False, |
|
reset_lr: bool = False, |
|
use_style_prompt: bool = False, |
|
grad_ckpt: bool = False |
|
): |
|
self.args = args |
|
|
|
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False, ) |
|
|
|
logger = "wandb" if wandb.api.api_key else None |
|
|
|
print(f"Using logger: {logger}") |
|
|
|
import tbe.common |
|
|
|
self.accelerator = Accelerator( |
|
log_with=logger, |
|
kwargs_handlers=[ddp_kwargs], |
|
gradient_accumulation_steps=grad_accumulation_steps, |
|
**accelerate_kwargs, |
|
) |
|
|
|
|
|
if logger == "wandb": |
|
if exists(wandb_resume_id): |
|
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}} |
|
else: |
|
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}} |
|
self.accelerator.init_trackers( |
|
project_name=wandb_project, |
|
init_kwargs=init_kwargs, |
|
config={ |
|
"epochs": epochs, |
|
"learning_rate": learning_rate, |
|
"num_warmup_updates": num_warmup_updates, |
|
"batch_size": batch_size, |
|
"batch_size_type": batch_size_type, |
|
"max_samples": max_samples, |
|
"grad_accumulation_steps": grad_accumulation_steps, |
|
"max_grad_norm": max_grad_norm, |
|
"gpus": self.accelerator.num_processes, |
|
"noise_scheduler": noise_scheduler, |
|
}, |
|
) |
|
|
|
self.precision = self.accelerator.state.mixed_precision |
|
self.precision = self.precision.replace("no", "fp32") |
|
print("!!!!!!!!!!!!!!!!!", self.precision) |
|
|
|
self.model = model |
|
|
|
|
|
|
|
|
|
if self.is_main: |
|
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs) |
|
|
|
self.ema_model.to(self.accelerator.device) |
|
if self.accelerator.state.distributed_type in ["DEEPSPEED", "FSDP"]: |
|
self.ema_model.half() |
|
|
|
self.epochs = epochs |
|
self.num_warmup_updates = num_warmup_updates |
|
self.save_per_updates = save_per_updates |
|
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps) |
|
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts") |
|
|
|
self.max_samples = max_samples |
|
self.grad_accumulation_steps = grad_accumulation_steps |
|
self.max_grad_norm = max_grad_norm |
|
|
|
self.noise_scheduler = noise_scheduler |
|
|
|
self.duration_predictor = duration_predictor |
|
|
|
self.reset_lr = reset_lr |
|
|
|
self.use_style_prompt = use_style_prompt |
|
|
|
self.grad_ckpt = grad_ckpt |
|
|
|
if bnb_optimizer: |
|
import bitsandbytes as bnb |
|
|
|
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate) |
|
else: |
|
self.optimizer = AdamW(model.parameters(), lr=learning_rate) |
|
|
|
|
|
|
|
if self.accelerator.state.distributed_type == "DEEPSPEED": |
|
self.accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = batch_size |
|
|
|
self.get_dataloader() |
|
self.get_scheduler() |
|
|
|
|
|
self.model, self.optimizer, self.scheduler, self.train_dataloader = self.accelerator.prepare(self.model, self.optimizer, self.scheduler, self.train_dataloader) |
|
|
|
def get_scheduler(self): |
|
warmup_steps = ( |
|
self.num_warmup_updates * self.accelerator.num_processes |
|
) |
|
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps |
|
decay_steps = total_steps - warmup_steps |
|
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps) |
|
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps) |
|
|
|
self.scheduler = SequentialLR( |
|
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps] |
|
) |
|
|
|
def get_constant_scheduler(self): |
|
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps |
|
self.scheduler = ConstantLR(self.optimizer, factor=1, total_iters=total_steps) |
|
|
|
def get_dataloader(self): |
|
prompt_path = self.args.prompt_path.split('|') |
|
lrc_path = self.args.lrc_path.split('|') |
|
latent_path = self.args.latent_path.split('|') |
|
ldd = LanceDiffusionDataset(*LanceDiffusionDataset.init_data(self.args.dataset_path), \ |
|
max_frames=self.args.max_frames, min_frames=self.args.min_frames, \ |
|
align_lyrics=self.args.align_lyrics, lyrics_slice=self.args.lyrics_slice, \ |
|
use_style_prompt=self.args.use_style_prompt, parse_lyrics=self.args.parse_lyrics, |
|
lyrics_shift=self.args.lyrics_shift, downsample_rate=self.args.downsample_rate, \ |
|
skip_empty_lyrics=self.args.skip_empty_lyrics, tokenizer_type=self.args.tokenizer_type, precision=self.precision, \ |
|
start_time=time.time(), pure_prob=self.args.pure_prob) |
|
|
|
|
|
self.train_dataloader = DataLoader( |
|
dataset=ldd, |
|
batch_size=self.args.batch_size, |
|
shuffle=True, |
|
num_workers=4, |
|
pin_memory=True, |
|
collate_fn=ldd.custom_collate_fn, |
|
persistent_workers=True |
|
) |
|
|
|
|
|
@property |
|
def is_main(self): |
|
return self.accelerator.is_main_process |
|
|
|
def save_checkpoint(self, step, last=False): |
|
self.accelerator.wait_for_everyone() |
|
if self.is_main: |
|
checkpoint = dict( |
|
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(), |
|
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(), |
|
ema_model_state_dict=self.ema_model.state_dict(), |
|
scheduler_state_dict=self.scheduler.state_dict(), |
|
step=step, |
|
) |
|
if not os.path.exists(self.checkpoint_path): |
|
os.makedirs(self.checkpoint_path) |
|
if last: |
|
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") |
|
print(f"Saved last checkpoint at step {step}") |
|
else: |
|
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt") |
|
|
|
def load_checkpoint(self): |
|
if ( |
|
not exists(self.checkpoint_path) |
|
or not os.path.exists(self.checkpoint_path) |
|
or not os.listdir(self.checkpoint_path) |
|
): |
|
return 0 |
|
|
|
self.accelerator.wait_for_everyone() |
|
if "model_last.pt" in os.listdir(self.checkpoint_path): |
|
latest_checkpoint = "model_last.pt" |
|
else: |
|
latest_checkpoint = sorted( |
|
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")], |
|
key=lambda x: int("".join(filter(str.isdigit, x))), |
|
)[-1] |
|
|
|
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location="cpu") |
|
|
|
|
|
if self.is_main: |
|
ema_dict = self.ema_model.state_dict() |
|
ema_checkpoint_dict = checkpoint["ema_model_state_dict"] |
|
|
|
filtered_ema_dict = { |
|
k: v for k, v in ema_checkpoint_dict.items() |
|
if k in ema_dict and ema_dict[k].shape == v.shape |
|
} |
|
|
|
print(f"Loading {len(filtered_ema_dict)} / {len(ema_checkpoint_dict)} ema_model params") |
|
self.ema_model.load_state_dict(filtered_ema_dict, strict=False) |
|
|
|
|
|
model_dict = self.accelerator.unwrap_model(self.model).state_dict() |
|
checkpoint_model_dict = checkpoint["model_state_dict"] |
|
|
|
filtered_model_dict = { |
|
k: v for k, v in checkpoint_model_dict.items() |
|
if k in model_dict and model_dict[k].shape == v.shape |
|
} |
|
|
|
print(f"Loading {len(filtered_model_dict)} / {len(checkpoint_model_dict)} model params") |
|
self.accelerator.unwrap_model(self.model).load_state_dict(filtered_model_dict, strict=False) |
|
|
|
|
|
if "step" in checkpoint: |
|
if self.scheduler and not self.reset_lr: |
|
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) |
|
step = checkpoint["step"] |
|
else: |
|
step = 0 |
|
|
|
del checkpoint |
|
gc.collect() |
|
print("Checkpoint loaded at step", step) |
|
return step |
|
|
|
def train(self, resumable_with_seed: int = None): |
|
train_dataloader = self.train_dataloader |
|
|
|
start_step = self.load_checkpoint() |
|
global_step = start_step |
|
|
|
if resumable_with_seed > 0: |
|
orig_epoch_step = len(train_dataloader) |
|
skipped_epoch = int(start_step // orig_epoch_step) |
|
skipped_batch = start_step % orig_epoch_step |
|
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) |
|
else: |
|
skipped_epoch = 0 |
|
|
|
for epoch in range(skipped_epoch, self.epochs): |
|
self.model.train() |
|
if resumable_with_seed > 0 and epoch == skipped_epoch: |
|
progress_bar = tqdm( |
|
skipped_dataloader, |
|
desc=f"Epoch {epoch+1}/{self.epochs}", |
|
unit="step", |
|
disable=not self.accelerator.is_local_main_process, |
|
initial=skipped_batch, |
|
total=orig_epoch_step, |
|
smoothing=0.15 |
|
) |
|
else: |
|
progress_bar = tqdm( |
|
train_dataloader, |
|
desc=f"Epoch {epoch+1}/{self.epochs}", |
|
unit="step", |
|
disable=not self.accelerator.is_local_main_process, |
|
smoothing=0.15 |
|
) |
|
|
|
for batch in progress_bar: |
|
with self.accelerator.accumulate(self.model): |
|
text_inputs = batch["lrc"] |
|
mel_spec = batch["latent"].permute(0, 2, 1) |
|
mel_lengths = batch["latent_lengths"] |
|
style_prompt = batch["prompt"] |
|
style_prompt_lens = batch["prompt_lengths"] |
|
start_time = batch["start_time"] |
|
|
|
loss, cond, pred = self.model( |
|
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler, |
|
style_prompt=style_prompt if self.use_style_prompt else None, |
|
style_prompt_lens=style_prompt_lens if self.use_style_prompt else None, |
|
grad_ckpt=self.grad_ckpt, start_time=start_time |
|
) |
|
self.accelerator.backward(loss) |
|
|
|
if self.max_grad_norm > 0 and self.accelerator.sync_gradients: |
|
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) |
|
|
|
self.optimizer.step() |
|
self.scheduler.step() |
|
self.optimizer.zero_grad() |
|
|
|
if self.is_main: |
|
self.ema_model.update() |
|
|
|
global_step += 1 |
|
|
|
if self.accelerator.is_local_main_process: |
|
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step) |
|
|
|
progress_bar.set_postfix(step=str(global_step), loss=loss.item()) |
|
|
|
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0: |
|
self.save_checkpoint(global_step) |
|
|
|
if global_step % self.last_per_steps == 0: |
|
self.save_checkpoint(global_step, last=True) |
|
|
|
self.save_checkpoint(global_step, last=True) |
|
|
|
self.accelerator.end_training() |
|
|