File size: 7,239 Bytes
10b581c
 
 
ef5add3
9dab6c2
10b581c
9dab6c2
 
10b581c
70f2266
10b581c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dab6c2
 
 
 
 
 
ef5add3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dab6c2
45a9d7f
ef5add3
cc5ea83
9dab6c2
10b581c
cc5ea83
10b581c
cc5ea83
10b581c
bf99f41
192f60f
 
 
 
10b581c
 
 
 
f57c553
10b581c
 
 
f57c553
10b581c
 
 
 
 
 
 
ef5add3
 
 
10b581c
 
 
 
ef5add3
10b581c
 
 
 
 
 
6a76f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b581c
 
 
 
192f60f
10b581c
 
 
 
 
 
 
 
ecf6d80
 
6a76f54
 
 
 
e65bce3
6a76f54
10b581c
 
ecf6d80
10b581c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import os
import torch
import gc
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer

from datetime import datetime
import random

from huggingface_hub import hf_hub_download

# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)

hf_hub_download(
    repo_id="wenqsun/DimensionX",
    filename="orbit_left_lora_weights.safetensors",
    local_dir="checkpoints"
)

hf_hub_download(
    repo_id="wenqsun/DimensionX",
    filename="orbit_up_lora_weights.safetensors",
    local_dir="checkpoints"
)

model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)

def find_and_move_object_to_cpu():
    for obj in gc.get_objects():
        try:
            # Check if the object is a PyTorch model
            if isinstance(obj, torch.nn.Module):
                # Check if any parameter of the model is on CUDA
                if any(param.is_cuda for param in obj.parameters()):
                    print(f"Found PyTorch model on CUDA: {type(obj).__name__}")
                    # Move the model to CPU
                    obj.to('cpu')
                    print(f"Moved {type(obj).__name__} to CPU.")
                    
                # Optionally check if buffers are on CUDA
                if any(buf.is_cuda for buf in obj.buffers()):
                    print(f"Found buffer on CUDA in {type(obj).__name__}")
                    obj.to('cpu')
                    print(f"Moved buffers of {type(obj).__name__} to CPU.")

        except Exception as e:
            # Handle any exceptions if obj is not a torch model
            pass


def clear_gpu():
    """Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
    # List memory usage before clearing
    print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
    print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")

    # Move any bound tensors back to CPU if needed
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()  # Ensure that all operations are completed
        print("GPU memory cleared.")
    
    print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
    print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")


def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):

    lora_path = "checkpoints/"
    adapter_name = None
    if orbit_type == "Left":
        weight_name = "orbit_left_lora_weights.safetensors"
    elif orbit_type == "Up":
        weight_name = "orbit_up_lora_weights.safetensors"
    lora_rank = 256

    # Generate a timestamp for adapter_name
    adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

    pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_name_{adapter_timestamp}")
    pipe.fuse_lora(lora_scale=1 / lora_rank)
    pipe.to("cuda")


    prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
    image = load_image(image_path)
    seed = random.randint(0, 2**8 - 1)
    
    video = pipe(
        image, 
        prompt, 
        num_inference_steps=50,  # NOT Changed
        guidance_scale=7.0,  # NOT Changed
        use_dynamic_cfg=True,
        generator=torch.Generator(device="cpu").manual_seed(seed)
    )

    find_and_move_object_to_cpu()
    clear_gpu()
    
    # Generate a timestamp for the output filename
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
    
    return f"output_{timestamp}.mp4"

with gr.Blocks() as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# DimensionX")
        gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/wenqsun/DimensionX">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://chenshuo20.github.io/DimensionX/">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
			<a href="https://arxiv.org/abs/2411.04928">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
			</a>
			<a href="https://huggingface.co/fffiloni">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
			</a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                image_in = gr.Image(label="Image Input", type="filepath")
                prompt = gr.Textbox(label="Prompt")
                orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True)
                submit_btn = gr.Button("Submit")
            with gr.Column():
                video_out = gr.Video(label="Video output")
                examples = gr.Examples(
                    examples = [
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
                            "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
                            "Left",
                            "./examples/output_astronaut_left.mp4"
                        ],
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
                            "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
                            "Up",
                            "./examples/output_astronaut_up.mp4"
                        ]
                    ],
                    inputs=[image_in, prompt, orbit_type, video_out]
                )

    submit_btn.click(
        fn=infer,
        inputs=[image_in, prompt, orbit_type],
        outputs=[video_out]
    )

demo.queue().launch(show_error=True, show_api=False)