Spaces:
Running
on
L40S
Running
on
L40S
File size: 7,239 Bytes
10b581c ef5add3 9dab6c2 10b581c 9dab6c2 10b581c 70f2266 10b581c 9dab6c2 ef5add3 9dab6c2 45a9d7f ef5add3 cc5ea83 9dab6c2 10b581c cc5ea83 10b581c cc5ea83 10b581c bf99f41 192f60f 10b581c f57c553 10b581c f57c553 10b581c ef5add3 10b581c ef5add3 10b581c 6a76f54 10b581c 192f60f 10b581c ecf6d80 6a76f54 e65bce3 6a76f54 10b581c ecf6d80 10b581c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
import os
import torch
import gc
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer
from datetime import datetime
import random
from huggingface_hub import hf_hub_download
# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_left_lora_weights.safetensors",
local_dir="checkpoints"
)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_up_lora_weights.safetensors",
local_dir="checkpoints"
)
model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
def find_and_move_object_to_cpu():
for obj in gc.get_objects():
try:
# Check if the object is a PyTorch model
if isinstance(obj, torch.nn.Module):
# Check if any parameter of the model is on CUDA
if any(param.is_cuda for param in obj.parameters()):
print(f"Found PyTorch model on CUDA: {type(obj).__name__}")
# Move the model to CPU
obj.to('cpu')
print(f"Moved {type(obj).__name__} to CPU.")
# Optionally check if buffers are on CUDA
if any(buf.is_cuda for buf in obj.buffers()):
print(f"Found buffer on CUDA in {type(obj).__name__}")
obj.to('cpu')
print(f"Moved buffers of {type(obj).__name__} to CPU.")
except Exception as e:
# Handle any exceptions if obj is not a torch model
pass
def clear_gpu():
"""Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
# List memory usage before clearing
print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
# Move any bound tensors back to CPU if needed
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize() # Ensure that all operations are completed
print("GPU memory cleared.")
print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
lora_path = "checkpoints/"
adapter_name = None
if orbit_type == "Left":
weight_name = "orbit_left_lora_weights.safetensors"
elif orbit_type == "Up":
weight_name = "orbit_up_lora_weights.safetensors"
lora_rank = 256
# Generate a timestamp for adapter_name
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_name_{adapter_timestamp}")
pipe.fuse_lora(lora_scale=1 / lora_rank)
pipe.to("cuda")
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
image = load_image(image_path)
seed = random.randint(0, 2**8 - 1)
video = pipe(
image,
prompt,
num_inference_steps=50, # NOT Changed
guidance_scale=7.0, # NOT Changed
use_dynamic_cfg=True,
generator=torch.Generator(device="cpu").manual_seed(seed)
)
find_and_move_object_to_cpu()
clear_gpu()
# Generate a timestamp for the output filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
return f"output_{timestamp}.mp4"
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# DimensionX")
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/wenqsun/DimensionX">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://chenshuo20.github.io/DimensionX/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2411.04928">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Image Input", type="filepath")
prompt = gr.Textbox(label="Prompt")
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True)
submit_btn = gr.Button("Submit")
with gr.Column():
video_out = gr.Video(label="Video output")
examples = gr.Examples(
examples = [
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Left",
"./examples/output_astronaut_left.mp4"
],
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Up",
"./examples/output_astronaut_up.mp4"
]
],
inputs=[image_in, prompt, orbit_type, video_out]
)
submit_btn.click(
fn=infer,
inputs=[image_in, prompt, orbit_type],
outputs=[video_out]
)
demo.queue().launch(show_error=True, show_api=False) |