Spaces:
Running
on
L40S
Running
on
L40S
import gradio as gr | |
import os | |
import torch | |
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel | |
from diffusers.utils import export_to_video, load_image | |
from transformers import T5EncoderModel, T5Tokenizer | |
from datetime import datetime | |
import random | |
from huggingface_hub import hf_hub_download | |
# Ensure 'checkpoint' directory exists | |
os.makedirs("checkpoints", exist_ok=True) | |
hf_hub_download( | |
repo_id="wenqsun/DimensionX", | |
filename="orbit_left_lora_weights.safetensors", | |
local_dir="checkpoints" | |
) | |
hf_hub_download( | |
repo_id="wenqsun/DimensionX", | |
filename="orbit_up_lora_weights.safetensors", | |
local_dir="checkpoints" | |
) | |
model_id = "THUDM/CogVideoX-5b-I2V" | |
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16) | |
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16) | |
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16) | |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer") | |
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16) | |
lora_path = "your lora path" | |
lora_rank = 256 | |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)): | |
lora_path = "checkpoints/" | |
adapter_name = None | |
if orbit_type == "Left": | |
weight_name = "orbit_left_lora_weights.safetensors" | |
adapter_name = "orbit_left_lora_weights" | |
elif orbit_type == "Up": | |
weight_name = "orbit_up_lora_weights.safetensors" | |
adapter_name = "orbit_up_lora_weights" | |
lora_rank = 256 | |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name="test_1") | |
pipe.fuse_lora(lora_scale=1 / lora_rank) | |
pipe.to("cuda") | |
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot." | |
image = load_image(image_path) | |
seed = random.randint(0, 2**8 - 1) | |
video = pipe( | |
image, | |
prompt, | |
num_inference_steps=50, # NOT Changed | |
guidance_scale=7.0, # NOT Changed | |
use_dynamic_cfg=True, | |
generator=torch.Generator(device="cpu").manual_seed(seed) | |
) | |
# Generate a timestamp for the output filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8) | |
return f"output_{timestamp}.mp4" | |
with gr.Blocks() as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# DimensionX") | |
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion") | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(label="Image Input", type="filepath") | |
prompt = gr.Textbox(label="Prompt") | |
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
video_out = gr.Video(label="Video output") | |
examples = gr.Examples( | |
examples = [ | |
[ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg", | |
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.", | |
"Left" | |
] | |
], | |
inputs=[image_in, prompt, orbit_type] | |
) | |
submit_btn.click( | |
fn=infer, | |
inputs=[image_in, prompt, orbit_type], | |
outputs=[video_out] | |
) | |
demo.queue().launch(show_error=True, show_api=False) |