Spaces:
Running
on
L40S
Running
on
L40S
import gradio as gr | |
import os | |
import torch | |
import gc | |
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel | |
from diffusers.utils import export_to_video, load_image | |
from transformers import T5EncoderModel, T5Tokenizer | |
from datetime import datetime | |
import random | |
from moviepy.editor import VideoFileClip | |
import ffmpeg | |
from huggingface_hub import hf_hub_download | |
# Ensure 'checkpoint' directory exists | |
os.makedirs("checkpoints", exist_ok=True) | |
# Download LoRA weights | |
hf_hub_download( | |
repo_id="wenqsun/DimensionX", | |
filename="orbit_left_lora_weights.safetensors", | |
local_dir="checkpoints" | |
) | |
hf_hub_download( | |
repo_id="wenqsun/DimensionX", | |
filename="orbit_up_lora_weights.safetensors", | |
local_dir="checkpoints" | |
) | |
# Load models in the global scope | |
model_id = "THUDM/CogVideoX-5b-I2V" | |
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu") | |
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu") | |
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu") | |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer") | |
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16) | |
# Add this near the top after imports | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' | |
def calculate_resize_dimensions(width, height, max_width=1024): | |
"""Calculate new dimensions maintaining aspect ratio""" | |
if width <= max_width: | |
return width, height | |
aspect_ratio = height / width | |
new_width = max_width | |
new_height = int(max_width * aspect_ratio) | |
# Make height even number for video encoding | |
new_height = new_height - (new_height % 2) | |
return new_width, new_height | |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)): | |
# Move everything to CPU initially | |
pipe.to("cpu") | |
torch.cuda.empty_cache() | |
# Load and get original image dimensions | |
image = load_image(image_path) | |
original_width, original_height = image.size | |
print(f"IMAGE INPUT SIZE: {original_width} x {original_height}") | |
# Calculate target dimensions maintaining aspect ratio | |
target_width, target_height = calculate_resize_dimensions(original_width, original_height) | |
print(f"TARGET SIZE: {target_width} x {target_height}") | |
lora_path = "checkpoints/" | |
weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors" | |
lora_rank = 256 | |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
# Load LoRA weights on CPU | |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}") | |
pipe.fuse_lora(lora_scale=1 / lora_rank) | |
try: | |
# Move to GPU just before inference | |
pipe.to("cuda") | |
torch.cuda.empty_cache() | |
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot." | |
seed = random.randint(0, 2**8 - 1) | |
with torch.inference_mode(): | |
video = pipe( | |
image, | |
prompt, | |
num_inference_steps=50, | |
guidance_scale=7.0, | |
use_dynamic_cfg=True, | |
generator=torch.Generator(device="cpu").manual_seed(seed) | |
) | |
finally: | |
# Ensure cleanup happens even if inference fails | |
pipe.to("cpu") | |
pipe.unfuse_lora() | |
pipe.unload_lora_weights() | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Generate initial output video | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
temp_path = f"output_{timestamp}_temp.mp4" | |
final_path = f"output_{timestamp}.mp4" | |
# First export the original video | |
export_to_video(video.frames[0], temp_path, fps=8) | |
try: | |
# Use ffmpeg-python | |
stream = ffmpeg.input(temp_path) | |
stream = ffmpeg.filter(stream, 'scale', target_width, target_height) | |
stream = ffmpeg.output(stream, final_path, | |
vcodec='libx264', | |
preset='medium', | |
crf=23) | |
ffmpeg.run(stream, overwrite_output=True) | |
except Exception as e: | |
print(f'Error during video processing: {str(e)}') | |
raise e | |
finally: | |
if os.path.exists(temp_path): | |
os.remove(temp_path) | |
return final_path | |
# Set up Gradio UI | |
with gr.Blocks(analytics_enabled=False) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# DimensionX") | |
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href="https://github.com/wenqsun/DimensionX"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
<a href="https://chenshuo20.github.io/DimensionX/"> | |
<img src='https://img.shields.io/badge/Project-Page-green'> | |
</a> | |
<a href="https://arxiv.org/abs/2411.04928"> | |
<img src='https://img.shields.io/badge/ArXiv-Paper-red'> | |
</a> | |
<a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
</a> | |
<a href="https://huggingface.co/fffiloni"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(label="Image Input", type="filepath") | |
prompt = gr.Textbox(label="Prompt") | |
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
video_out = gr.Video(label="Video output") | |
examples = gr.Examples( | |
examples = [ | |
[ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg", | |
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.", | |
"Left", | |
"./examples/output_astronaut_left.mp4" | |
], | |
[ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg", | |
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.", | |
"Up", | |
"./examples/output_astronaut_up.mp4" | |
] | |
], | |
inputs=[image_in, prompt, orbit_type, video_out] | |
) | |
submit_btn.click( | |
fn=infer, | |
inputs=[image_in, prompt, orbit_type], | |
outputs=[video_out] | |
) | |
demo.queue().launch(show_error=True, show_api=False, ssr_mode=False) |