DimensionX / app.py
fffiloni's picture
Update app.py
dfaa5fc verified
raw
history blame
7.22 kB
import gradio as gr
import os
import torch
import gc
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer
from datetime import datetime
import random
from huggingface_hub import hf_hub_download
# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_left_lora_weights.safetensors",
local_dir="checkpoints"
)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_up_lora_weights.safetensors",
local_dir="checkpoints"
)
model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
def find_and_move_object_to_cpu():
for obj in gc.get_objects():
try:
# Check if the object is a PyTorch model
if isinstance(obj, torch.nn.Module):
# Check if any parameter of the model is on CUDA
if any(param.is_cuda for param in obj.parameters()):
print(f"Found PyTorch model on CUDA: {type(obj).__name__}")
# Move the model to CPU
obj.to('cpu')
print(f"Moved {type(obj).__name__} to CPU.")
# Optionally check if buffers are on CUDA
if any(buf.is_cuda for buf in obj.buffers()):
print(f"Found buffer on CUDA in {type(obj).__name__}")
obj.to('cpu')
print(f"Moved buffers of {type(obj).__name__} to CPU.")
except Exception as e:
# Handle any exceptions if obj is not a torch model
pass
def clear_gpu():
"""Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
# List memory usage before clearing
print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
# Move any bound tensors back to CPU if needed
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize() # Ensure that all operations are completed
print("GPU memory cleared.")
print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
lora_path = "checkpoints/"
adapter_name = None
if orbit_type == "Left":
weight_name = "orbit_left_lora_weights.safetensors"
elif orbit_type == "Up":
weight_name = "orbit_up_lora_weights.safetensors"
lora_rank = 256
# Generate a timestamp for adapter_name
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
pipe.load_lora_weights(lora_path, weight_name=weight_name)
pipe.fuse_lora(lora_scale=1 / lora_rank)
pipe.to("cuda")
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
image = load_image(image_path)
seed = random.randint(0, 2**8 - 1)
video = pipe(
image,
prompt,
num_inference_steps=50, # NOT Changed
guidance_scale=7.0, # NOT Changed
use_dynamic_cfg=True,
generator=torch.Generator(device="cpu").manual_seed(seed)
)
find_and_move_object_to_cpu()
pipe.to("cpu")
clear_gpu()
# Generate a timestamp for the output filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
return f"output_{timestamp}.mp4"
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# DimensionX")
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/wenqsun/DimensionX">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://chenshuo20.github.io/DimensionX/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2411.04928">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Image Input", type="filepath")
prompt = gr.Textbox(label="Prompt")
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True)
submit_btn = gr.Button("Submit")
with gr.Column():
video_out = gr.Video(label="Video output")
examples = gr.Examples(
examples = [
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Left",
"./examples/output_astronaut_left.mp4"
],
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Up",
"./examples/output_astronaut_up.mp4"
]
],
inputs=[image_in, prompt, orbit_type, video_out]
)
submit_btn.click(
fn=infer,
inputs=[image_in, prompt, orbit_type],
outputs=[video_out]
)
demo.queue().launch(show_error=True, show_api=False)