Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
import uuid
|
6 |
+
from scipy.interpolate import interp1d, PchipInterpolator
|
7 |
+
import torchvision
|
8 |
+
from utils import *
|
9 |
+
|
10 |
+
output_dir = "outputs"
|
11 |
+
ensure_dirname(output_dir)
|
12 |
+
|
13 |
+
def interpolate_trajectory(points, n_points):
|
14 |
+
x = [point[0] for point in points]
|
15 |
+
y = [point[1] for point in points]
|
16 |
+
|
17 |
+
t = np.linspace(0, 1, len(points))
|
18 |
+
|
19 |
+
# fx = interp1d(t, x, kind='cubic')
|
20 |
+
# fy = interp1d(t, y, kind='cubic')
|
21 |
+
fx = PchipInterpolator(t, x)
|
22 |
+
fy = PchipInterpolator(t, y)
|
23 |
+
|
24 |
+
new_t = np.linspace(0, 1, n_points)
|
25 |
+
|
26 |
+
new_x = fx(new_t)
|
27 |
+
new_y = fy(new_t)
|
28 |
+
new_points = list(zip(new_x, new_y))
|
29 |
+
|
30 |
+
return new_points
|
31 |
+
|
32 |
+
def visualize_drag_v2(background_image_path, splited_tracks, width, height):
|
33 |
+
trajectory_maps = []
|
34 |
+
|
35 |
+
background_image = Image.open(background_image_path).convert('RGBA')
|
36 |
+
background_image = background_image.resize((width, height))
|
37 |
+
w, h = background_image.size
|
38 |
+
transparent_background = np.array(background_image)
|
39 |
+
transparent_background[:, :, -1] = 128
|
40 |
+
transparent_background = Image.fromarray(transparent_background)
|
41 |
+
|
42 |
+
# Create a transparent layer with the same size as the background image
|
43 |
+
transparent_layer = np.zeros((h, w, 4))
|
44 |
+
for splited_track in splited_tracks:
|
45 |
+
if len(splited_track) > 1:
|
46 |
+
splited_track = interpolate_trajectory(splited_track, 16)
|
47 |
+
splited_track = splited_track[:16]
|
48 |
+
for i in range(len(splited_track)-1):
|
49 |
+
start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
|
50 |
+
end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
|
51 |
+
vx = end_point[0] - start_point[0]
|
52 |
+
vy = end_point[1] - start_point[1]
|
53 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
54 |
+
if i == len(splited_track)-2:
|
55 |
+
cv2.arrowedLine(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2, tipLength=8 / arrow_length)
|
56 |
+
else:
|
57 |
+
cv2.line(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2)
|
58 |
+
else:
|
59 |
+
cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 5, (255, 0, 0, 192), -1)
|
60 |
+
|
61 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
62 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
63 |
+
trajectory_maps.append(trajectory_map)
|
64 |
+
return trajectory_maps, transparent_layer
|
65 |
+
|
66 |
+
class Drag:
|
67 |
+
def __init__(self, device, model_path, cfg_path, height, width, model_length):
|
68 |
+
self.device = device
|
69 |
+
cf = import_filename(cfg_path)
|
70 |
+
Net, args = cf.Net, cf.args
|
71 |
+
drag_nuwa_net = Net(args)
|
72 |
+
state_dict = file2data(model_path, map_location='cpu')
|
73 |
+
adaptively_load_state_dict(drag_nuwa_net, state_dict)
|
74 |
+
drag_nuwa_net.eval()
|
75 |
+
drag_nuwa_net.to(device)
|
76 |
+
# drag_nuwa_net.half()
|
77 |
+
self.drag_nuwa_net = drag_nuwa_net
|
78 |
+
self.height = height
|
79 |
+
self.width = width
|
80 |
+
_, model_step, _ = split_filename(model_path)
|
81 |
+
self.ouput_prefix = f'{model_step}_{width}X{height}'
|
82 |
+
self.model_length = model_length
|
83 |
+
|
84 |
+
@torch.no_grad()
|
85 |
+
def forward_sample(self, input_drag, input_first_frame, motion_bucket_id, outputs=dict()):
|
86 |
+
device = self.device
|
87 |
+
|
88 |
+
b, l, h, w, c = input_drag.size()
|
89 |
+
drag = self.drag_nuwa_net.apply_gaussian_filter_on_drag(input_drag)
|
90 |
+
drag = torch.cat([torch.zeros_like(drag[:, 0]).unsqueeze(1), drag], dim=1) # pad the first frame with zero flow
|
91 |
+
drag = rearrange(drag, 'b l h w c -> b l c h w')
|
92 |
+
|
93 |
+
input_conditioner = dict()
|
94 |
+
input_conditioner['cond_frames_without_noise'] = input_first_frame
|
95 |
+
input_conditioner['cond_frames'] = (input_first_frame + 0.02 * torch.randn_like(input_first_frame))
|
96 |
+
input_conditioner['motion_bucket_id'] = torch.tensor([motion_bucket_id]).to(drag.device).repeat(b * (l+1))
|
97 |
+
input_conditioner['fps_id'] = torch.tensor([self.drag_nuwa_net.args.fps]).to(drag.device).repeat(b * (l+1))
|
98 |
+
input_conditioner['cond_aug'] = torch.tensor([0.02]).to(drag.device).repeat(b * (l+1))
|
99 |
+
|
100 |
+
input_conditioner_uc = {}
|
101 |
+
for key in input_conditioner.keys():
|
102 |
+
if key not in input_conditioner_uc and isinstance(input_conditioner[key], torch.Tensor):
|
103 |
+
input_conditioner_uc[key] = input_conditioner[key].clone()
|
104 |
+
|
105 |
+
c, uc = self.drag_nuwa_net.conditioner.get_unconditional_conditioning(
|
106 |
+
input_conditioner,
|
107 |
+
batch_uc=input_conditioner_uc,
|
108 |
+
force_uc_zero_embeddings=[
|
109 |
+
"cond_frames",
|
110 |
+
"cond_frames_without_noise",
|
111 |
+
],
|
112 |
+
)
|
113 |
+
|
114 |
+
for k in ["crossattn", "concat"]:
|
115 |
+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=self.drag_nuwa_net.num_frames)
|
116 |
+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...")
|
117 |
+
c[k] = repeat(c[k], "b ... -> b t ...", t=self.drag_nuwa_net.num_frames)
|
118 |
+
c[k] = rearrange(c[k], "b t ... -> (b t) ...")
|
119 |
+
|
120 |
+
H, W = input_conditioner['cond_frames_without_noise'].shape[2:]
|
121 |
+
shape = (self.drag_nuwa_net.num_frames, 4, H // 8, W // 8)
|
122 |
+
randn = torch.randn(shape).to(self.device)
|
123 |
+
|
124 |
+
additional_model_inputs = {}
|
125 |
+
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
126 |
+
2, self.drag_nuwa_net.num_frames
|
127 |
+
).to(self.device)
|
128 |
+
additional_model_inputs["num_video_frames"] = self.drag_nuwa_net.num_frames
|
129 |
+
additional_model_inputs["flow"] = drag.repeat(2, 1, 1, 1, 1) # c and uc
|
130 |
+
|
131 |
+
def denoiser(input, sigma, c):
|
132 |
+
return self.drag_nuwa_net.denoiser(self.drag_nuwa_net.model, input, sigma, c, **additional_model_inputs)
|
133 |
+
|
134 |
+
samples_z = self.drag_nuwa_net.sampler(denoiser, randn, cond=c, uc=uc)
|
135 |
+
samples = self.drag_nuwa_net.decode_first_stage(samples_z)
|
136 |
+
|
137 |
+
outputs['logits_imgs'] = rearrange(samples, '(b l) c h w -> b l c h w', b=b)
|
138 |
+
return outputs
|
139 |
+
|
140 |
+
def run(self, first_frame_path, tracking_points, inference_batch_size, motion_bucket_id):
|
141 |
+
original_width, original_height=576, 320
|
142 |
+
|
143 |
+
input_all_points = tracking_points.constructor_args['value']
|
144 |
+
resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
|
145 |
+
|
146 |
+
input_drag = torch.zeros(self.model_length - 1, self.height, self.width, 2)
|
147 |
+
for splited_track in resized_all_points:
|
148 |
+
if len(splited_track) == 1: # stationary point
|
149 |
+
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
|
150 |
+
splited_track = tuple([splited_track[0], displacement_point])
|
151 |
+
# interpolate the track
|
152 |
+
splited_track = interpolate_trajectory(splited_track, self.model_length)
|
153 |
+
splited_track = splited_track[:self.model_length]
|
154 |
+
if len(splited_track) < self.model_length:
|
155 |
+
splited_track = splited_track + [splited_track[-1]] * (self.model_length -len(splited_track))
|
156 |
+
for i in range(self.model_length - 1):
|
157 |
+
start_point = splited_track[i]
|
158 |
+
end_point = splited_track[i+1]
|
159 |
+
input_drag[i][int(start_point[1])][int(start_point[0])][0] = end_point[0] - start_point[0]
|
160 |
+
input_drag[i][int(start_point[1])][int(start_point[0])][1] = end_point[1] - start_point[1]
|
161 |
+
|
162 |
+
dir, base, ext = split_filename(first_frame_path)
|
163 |
+
id = base.split('_')[-1]
|
164 |
+
|
165 |
+
image_pil = image2pil(first_frame_path)
|
166 |
+
image_pil = image_pil.resize((self.width, self.height), Image.BILINEAR).convert('RGB')
|
167 |
+
|
168 |
+
visualized_drag, _ = visualize_drag_v2(first_frame_path, resized_all_points, self.width, self.height)
|
169 |
+
|
170 |
+
first_frames_transform = transforms.Compose([
|
171 |
+
lambda x: Image.fromarray(x),
|
172 |
+
transforms.ToTensor(),
|
173 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
174 |
+
])
|
175 |
+
|
176 |
+
outputs = None
|
177 |
+
ouput_video_list = []
|
178 |
+
num_inference = 1
|
179 |
+
for i in tqdm(range(num_inference)):
|
180 |
+
if not outputs:
|
181 |
+
first_frames = image2arr(first_frame_path)
|
182 |
+
first_frames = repeat(first_frames_transform(first_frames), 'c h w -> b c h w', b=inference_batch_size).to(self.device)
|
183 |
+
else:
|
184 |
+
first_frames = outputs['logits_imgs'][:, -1]
|
185 |
+
|
186 |
+
outputs = self.forward_sample(
|
187 |
+
repeat(input_drag[i*(self.model_length - 1):(i+1)*(self.model_length - 1)], 'l h w c -> b l h w c', b=inference_batch_size).to(self.device),
|
188 |
+
first_frames,
|
189 |
+
motion_bucket_id)
|
190 |
+
ouput_video_list.append(outputs['logits_imgs'])
|
191 |
+
|
192 |
+
for i in range(inference_batch_size):
|
193 |
+
ouput_tensor = [ouput_video_list[0][i]]
|
194 |
+
for j in range(num_inference - 1):
|
195 |
+
ouput_tensor.append(ouput_video_list[j+1][i][1:])
|
196 |
+
ouput_tensor = torch.cat(ouput_tensor, dim=0)
|
197 |
+
outputs_path = os.path.join(output_dir, f'output_{i}_{id}.gif')
|
198 |
+
data2file([transforms.ToPILImage('RGB')(utils.make_grid(e.to(torch.float32).cpu(), normalize=True, range=(-1, 1))) for e in ouput_tensor], outputs_path,
|
199 |
+
printable=False, duration=1 / 6, override=True)
|
200 |
+
|
201 |
+
return visualized_drag[0], outputs_path
|
202 |
+
|
203 |
+
with gr.Blocks() as demo:
|
204 |
+
gr.Markdown("""<h1 align="center">DragNUWA 1.5</h1><br>""")
|
205 |
+
gr.HTML("""
|
206 |
+
<p style="margin:12px auto;display: flex;justify-content: center;">
|
207 |
+
<a href="https://huggingface.co/spaces/fffiloni/DragNUWA?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space"></a>
|
208 |
+
</p>
|
209 |
+
""")
|
210 |
+
gr.Markdown("""Official Gradio Demo for <a href='https://arxiv.org/abs/2308.08089'><b>DragNUWA: Fine-grained Control in Video Generation by Integrating Text, Image, and Trajectory</b></a>.<br>
|
211 |
+
🔥DragNUWA enables users to manipulate backgrounds or objects within images directly, and the model seamlessly translates these actions into **camera movements** or **object motions**, generating the corresponding video.<br>
|
212 |
+
🔥DragNUWA 1.5 enables Stable Video Diffusion to animate an image according to specific path.<br>""")
|
213 |
+
|
214 |
+
gr.Image(label="DragNUWA", value="assets/DragNUWA1.5/Figure1.gif")
|
215 |
+
|
216 |
+
gr.Markdown("""## Usage: <br>
|
217 |
+
1. Upload an image via the "Upload Image" button.<br>
|
218 |
+
2. Draw some drags.<br>
|
219 |
+
2.1. Click "Add Drag" when you want to add a control path.<br>
|
220 |
+
2.2. You can click several points which forms a path.<br>
|
221 |
+
2.3. Click "Delete last drag" to delete the whole lastest path.<br>
|
222 |
+
2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
|
223 |
+
3. Animate the image according the path with a click on "Run" button. <br>""")
|
224 |
+
|
225 |
+
DragNUWA_net = Drag("cuda:0", 'models/drag_nuwa_svd.pth', 'DragNUWA_net.py', 320, 576, 14)
|
226 |
+
first_frame_path = gr.State()
|
227 |
+
tracking_points = gr.State([])
|
228 |
+
|
229 |
+
def reset_states(first_frame_path, tracking_points):
|
230 |
+
first_frame_path = gr.State()
|
231 |
+
tracking_points = gr.State([])
|
232 |
+
return first_frame_path, tracking_points
|
233 |
+
|
234 |
+
def preprocess_image(image):
|
235 |
+
image_pil = image2pil(image.name)
|
236 |
+
raw_w, raw_h = image_pil.size
|
237 |
+
resize_ratio = max(576/raw_w, 320/raw_h)
|
238 |
+
image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
|
239 |
+
image_pil = transforms.CenterCrop((320, 576))(image_pil.convert('RGB'))
|
240 |
+
|
241 |
+
first_frame_path = os.path.join(output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
|
242 |
+
image_pil.save(first_frame_path)
|
243 |
+
|
244 |
+
return first_frame_path, first_frame_path, gr.State([])
|
245 |
+
|
246 |
+
def add_drag(tracking_points):
|
247 |
+
tracking_points.constructor_args['value'].append([])
|
248 |
+
return tracking_points
|
249 |
+
|
250 |
+
def delete_last_drag(tracking_points, first_frame_path):
|
251 |
+
tracking_points.constructor_args['value'].pop()
|
252 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
253 |
+
w, h = transparent_background.size
|
254 |
+
transparent_layer = np.zeros((h, w, 4))
|
255 |
+
for track in tracking_points.constructor_args['value']:
|
256 |
+
if len(track) > 1:
|
257 |
+
for i in range(len(track)-1):
|
258 |
+
start_point = track[i]
|
259 |
+
end_point = track[i+1]
|
260 |
+
vx = end_point[0] - start_point[0]
|
261 |
+
vy = end_point[1] - start_point[1]
|
262 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
263 |
+
if i == len(track)-2:
|
264 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
265 |
+
else:
|
266 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
267 |
+
else:
|
268 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
269 |
+
|
270 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
271 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
272 |
+
return tracking_points, trajectory_map
|
273 |
+
|
274 |
+
def delete_last_step(tracking_points, first_frame_path):
|
275 |
+
tracking_points.constructor_args['value'][-1].pop()
|
276 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
277 |
+
w, h = transparent_background.size
|
278 |
+
transparent_layer = np.zeros((h, w, 4))
|
279 |
+
for track in tracking_points.constructor_args['value']:
|
280 |
+
if len(track) > 1:
|
281 |
+
for i in range(len(track)-1):
|
282 |
+
start_point = track[i]
|
283 |
+
end_point = track[i+1]
|
284 |
+
vx = end_point[0] - start_point[0]
|
285 |
+
vy = end_point[1] - start_point[1]
|
286 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
287 |
+
if i == len(track)-2:
|
288 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
289 |
+
else:
|
290 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
291 |
+
else:
|
292 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
293 |
+
|
294 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
295 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
296 |
+
return tracking_points, trajectory_map
|
297 |
+
|
298 |
+
def add_tracking_points(tracking_points, first_frame_path, evt: gr.SelectData): # SelectData is a subclass of EventData
|
299 |
+
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
300 |
+
tracking_points.constructor_args['value'][-1].append(evt.index)
|
301 |
+
|
302 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
303 |
+
w, h = transparent_background.size
|
304 |
+
transparent_layer = np.zeros((h, w, 4))
|
305 |
+
for track in tracking_points.constructor_args['value']:
|
306 |
+
if len(track) > 1:
|
307 |
+
for i in range(len(track)-1):
|
308 |
+
start_point = track[i]
|
309 |
+
end_point = track[i+1]
|
310 |
+
vx = end_point[0] - start_point[0]
|
311 |
+
vy = end_point[1] - start_point[1]
|
312 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
313 |
+
if i == len(track)-2:
|
314 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
315 |
+
else:
|
316 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
317 |
+
else:
|
318 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
319 |
+
|
320 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
321 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
322 |
+
return tracking_points, trajectory_map
|
323 |
+
|
324 |
+
with gr.Row():
|
325 |
+
with gr.Column(scale=1):
|
326 |
+
image_upload_button = gr.UploadButton(label="Upload Image",file_types=["image"])
|
327 |
+
add_drag_button = gr.Button(value="Add Drag")
|
328 |
+
reset_button = gr.Button(value="Reset")
|
329 |
+
run_button = gr.Button(value="Run")
|
330 |
+
delete_last_drag_button = gr.Button(value="Delete last drag")
|
331 |
+
delete_last_step_button = gr.Button(value="Delete last step")
|
332 |
+
|
333 |
+
with gr.Column(scale=7):
|
334 |
+
with gr.Row():
|
335 |
+
with gr.Column(scale=6):
|
336 |
+
input_image = gr.Image(label=None,
|
337 |
+
interactive=True,
|
338 |
+
height=320,
|
339 |
+
width=576,)
|
340 |
+
with gr.Column(scale=6):
|
341 |
+
output_image = gr.Image(label=None,
|
342 |
+
height=320,
|
343 |
+
width=576,)
|
344 |
+
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column(scale=1):
|
347 |
+
inference_batch_size = gr.Slider(label='Inference Batch Size',
|
348 |
+
minimum=1,
|
349 |
+
maximum=1,
|
350 |
+
step=1,
|
351 |
+
value=1)
|
352 |
+
|
353 |
+
motion_bucket_id = gr.Slider(label='Motion Bucket',
|
354 |
+
minimum=1,
|
355 |
+
maximum=100,
|
356 |
+
step=1,
|
357 |
+
value=4)
|
358 |
+
|
359 |
+
with gr.Column(scale=5):
|
360 |
+
output_video = gr.Image(label="Output Video",
|
361 |
+
height=320,
|
362 |
+
width=576,)
|
363 |
+
|
364 |
+
with gr.Row():
|
365 |
+
gr.Markdown("""
|
366 |
+
## Citation
|
367 |
+
```bibtex
|
368 |
+
@article{yin2023dragnuwa,
|
369 |
+
title={Dragnuwa: Fine-grained control in video generation by integrating text, image, and trajectory},
|
370 |
+
author={Yin, Shengming and Wu, Chenfei and Liang, Jian and Shi, Jie and Li, Houqiang and Ming, Gong and Duan, Nan},
|
371 |
+
journal={arXiv preprint arXiv:2308.08089},
|
372 |
+
year={2023}
|
373 |
+
}
|
374 |
+
```
|
375 |
+
""")
|
376 |
+
|
377 |
+
|
378 |
+
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points])
|
379 |
+
|
380 |
+
add_drag_button.click(add_drag, tracking_points, tracking_points)
|
381 |
+
|
382 |
+
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path], [tracking_points, input_image])
|
383 |
+
|
384 |
+
delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path], [tracking_points, input_image])
|
385 |
+
|
386 |
+
reset_button.click(reset_states, [first_frame_path, tracking_points], [first_frame_path, tracking_points])
|
387 |
+
|
388 |
+
input_image.select(add_tracking_points, [tracking_points, first_frame_path], [tracking_points, input_image])
|
389 |
+
|
390 |
+
run_button.click(DragNUWA_net.run, [first_frame_path, tracking_points, inference_batch_size, motion_bucket_id], [output_image, output_video])
|
391 |
+
|
392 |
+
demo.launch(server_name="0.0.0.0", debug=True)
|