Spaces:
Running
on
T4
Running
on
T4
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
def generate(image, prompt, seed):
|
5 |
+
print(image, prompt, seed)
|
6 |
+
command = f"python handrefiner.py --input_img {image} --out_dir /content/HandRefiner/output --strength 0.55 --weights /content/HandRefiner/models/inpaint_depth_control.ckpt --prompt '{prompt}' --seed {seed}"
|
7 |
+
try:
|
8 |
+
result = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
9 |
+
output_path = '/content/HandRefiner/output/image_0.jpg'
|
10 |
+
print("Output:", result.stdout)
|
11 |
+
return output_path
|
12 |
+
except subprocess.CalledProcessError as e:
|
13 |
+
print("Error:", e.stderr)
|
14 |
+
return None
|
15 |
+
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Row():
|
18 |
+
with gr.Column():
|
19 |
+
image = gr.Image(type='filepath')
|
20 |
+
textbox = gr.Textbox(show_label=False, value="a person facing the camera, making a hand gesture, indoor")
|
21 |
+
seed = gr.Slider(minimum=0, maximum=1000000, value=643534)
|
22 |
+
button = gr.Button()
|
23 |
+
output_image = gr.Image(show_label=False, type="filepath", interactive=False, height=512, width=512)
|
24 |
+
button.click(fn=generate, inputs=[image, textbox, seed], outputs=[output_image])
|
25 |
+
|
26 |
+
demo.queue().launch(inline=False, share=True, debug=True)
|