File size: 14,220 Bytes
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import cv2
import math
import numpy as np
import random
import torch
from torch.utils import data as data

from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import img2tensor, DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from basicsr.data.transforms import paired_random_crop

AUGMENT_OPT = {
    'use_hflip': False,
    'use_rot': False
}

KERNEL_OPT = {
    'blur_kernel_size': 21,
    'kernel_list': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
    'kernel_prob': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
    'sinc_prob': 0.1,
    'blur_sigma': [0.2, 3],
    'betag_range': [0.5, 4],
    'betap_range': [1, 2],

    'blur_kernel_size2': 21,
    'kernel_list2': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
    'kernel_prob2': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
    'sinc_prob2': 0.1,
    'blur_sigma2': [0.2, 1.5],
    'betag_range2': [0.5, 4],
    'betap_range2': [1, 2],
    'final_sinc_prob': 0.8,
}

DEGRADE_OPT = {
    'resize_prob': [0.2, 0.7, 0.1],  # up, down, keep
    'resize_range': [0.15, 1.5],
    'gaussian_noise_prob': 0.5,
    'noise_range': [1, 30],
    'poisson_scale_range': [0.05, 3],
    'gray_noise_prob': 0.4,
    'jpeg_range': [30, 95],

    # the second degradation process
    'second_blur_prob': 0.8,
    'resize_prob2': [0.3, 0.4, 0.3],  # up, down, keep
    'resize_range2': [0.3, 1.2],
    'gaussian_noise_prob2': 0.5,
    'noise_range2': [1, 25],
    'poisson_scale_range2': [0.05, 2.5],
    'gray_noise_prob2': 0.4,
    'jpeg_range2': [30, 95],

    'gt_size': 512,
    'no_degradation_prob': 0.01,
    'use_usm': True,
    'sf': 4,
    'random_size': False,
    'resize_lq': True
}

class RealESRGANDegradation:

    def __init__(self, augment_opt=None, kernel_opt=None, degrade_opt=None, device='cuda', resolution=None):
        if augment_opt is None:
            augment_opt = AUGMENT_OPT
        self.augment_opt = augment_opt
        if kernel_opt is None:
            kernel_opt = KERNEL_OPT
        self.kernel_opt = kernel_opt
        if degrade_opt is None:
            degrade_opt = DEGRADE_OPT
        self.degrade_opt = degrade_opt
        if resolution is not None:
            self.degrade_opt['gt_size'] = resolution
        self.device = device

        self.jpeger = DiffJPEG(differentiable=False).to(self.device)
        self.usm_sharpener = USMSharp().to(self.device)

        # blur settings for the first degradation
        self.blur_kernel_size = kernel_opt['blur_kernel_size']
        self.kernel_list = kernel_opt['kernel_list']
        self.kernel_prob = kernel_opt['kernel_prob']  # a list for each kernel probability
        self.blur_sigma = kernel_opt['blur_sigma']
        self.betag_range = kernel_opt['betag_range']  # betag used in generalized Gaussian blur kernels
        self.betap_range = kernel_opt['betap_range']  # betap used in plateau blur kernels
        self.sinc_prob = kernel_opt['sinc_prob']  # the probability for sinc filters

        # blur settings for the second degradation
        self.blur_kernel_size2 = kernel_opt['blur_kernel_size2']
        self.kernel_list2 = kernel_opt['kernel_list2']
        self.kernel_prob2 = kernel_opt['kernel_prob2']
        self.blur_sigma2 = kernel_opt['blur_sigma2']
        self.betag_range2 = kernel_opt['betag_range2']
        self.betap_range2 = kernel_opt['betap_range2']
        self.sinc_prob2 = kernel_opt['sinc_prob2']

        # a final sinc filter
        self.final_sinc_prob = kernel_opt['final_sinc_prob']

        self.kernel_range = [2 * v + 1 for v in range(3, 11)]  # kernel size ranges from 7 to 21
        # TODO: kernel range is now hard-coded, should be in the configure file
        self.pulse_tensor = torch.zeros(21, 21).float()  # convolving with pulse tensor brings no blurry effect
        self.pulse_tensor[10, 10] = 1

    def get_kernel(self):

        # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.kernel_opt['sinc_prob']:
            # this sinc filter setting is for kernels ranging from [7, 21]
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel = random_mixed_kernels(
                self.kernel_list,
                self.kernel_prob,
                kernel_size,
                self.blur_sigma,
                self.blur_sigma, [-math.pi, math.pi],
                self.betag_range,
                self.betap_range,
                noise_range=None)
        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.kernel_opt['sinc_prob2']:
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel2 = random_mixed_kernels(
                self.kernel_list2,
                self.kernel_prob2,
                kernel_size,
                self.blur_sigma2,
                self.blur_sigma2, [-math.pi, math.pi],
                self.betag_range2,
                self.betap_range2,
                noise_range=None)

        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------------------- the final sinc kernel ------------------------------------- #
        if np.random.uniform() < self.kernel_opt['final_sinc_prob']:
            kernel_size = random.choice(self.kernel_range)
            omega_c = np.random.uniform(np.pi / 3, np.pi)
            sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
            sinc_kernel = torch.FloatTensor(sinc_kernel)
        else:
            sinc_kernel = self.pulse_tensor

        # BGR to RGB, HWC to CHW, numpy to tensor
        kernel = torch.FloatTensor(kernel)
        kernel2 = torch.FloatTensor(kernel2)

        return (kernel, kernel2, sinc_kernel)

    @torch.no_grad()
    def __call__(self, img_gt, kernels=None):
        '''
            :param: img_gt: BCHW, RGB, [0, 1] float32 tensor
        '''
        if kernels is None:
            kernel = []
            kernel2 = []
            sinc_kernel = []
            for _ in range(img_gt.shape[0]):
                k, k2, sk = self.get_kernel()
                kernel.append(k)
                kernel2.append(k2)
                sinc_kernel.append(sk)
            kernel = torch.stack(kernel)
            kernel2 = torch.stack(kernel2)
            sinc_kernel = torch.stack(sinc_kernel)
        else:
            # kernels created in dataset.
            kernel, kernel2, sinc_kernel = kernels

        # ----------------------- Pre-process ----------------------- #
        im_gt = img_gt.to(self.device)
        if self.degrade_opt['use_usm']:
            im_gt = self.usm_sharpener(im_gt)
        im_gt = im_gt.to(memory_format=torch.contiguous_format).float()
        kernel = kernel.to(self.device)
        kernel2 = kernel2.to(self.device)
        sinc_kernel = sinc_kernel.to(self.device)
        ori_h, ori_w = im_gt.size()[2:4]

        # ----------------------- The first degradation process ----------------------- #
        # blur
        out = filter2D(im_gt, kernel)
        # random resize
        updown_type = random.choices(
                ['up', 'down', 'keep'],
                self.degrade_opt['resize_prob'],
                )[0]
        if updown_type == 'up':
            scale = random.uniform(1, self.degrade_opt['resize_range'][1])
        elif updown_type == 'down':
            scale = random.uniform(self.degrade_opt['resize_range'][0], 1)
        else:
            scale = 1
        mode = random.choice(['area', 'bilinear', 'bicubic'])
        out = torch.nn.functional.interpolate(out, scale_factor=scale, mode=mode)
        # add noise
        gray_noise_prob = self.degrade_opt['gray_noise_prob']
        if random.random() < self.degrade_opt['gaussian_noise_prob']:
            out = random_add_gaussian_noise_pt(
                out,
                sigma_range=self.degrade_opt['noise_range'],
                clip=True,
                rounds=False,
                gray_prob=gray_noise_prob,
                )
        else:
            out = random_add_poisson_noise_pt(
                out,
                scale_range=self.degrade_opt['poisson_scale_range'],
                gray_prob=gray_noise_prob,
                clip=True,
                rounds=False)
        # JPEG compression
        jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range'])
        out = torch.clamp(out, 0, 1)  # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
        out = self.jpeger(out, quality=jpeg_p)

        # ----------------------- The second degradation process ----------------------- #
        # blur
        if random.random() < self.degrade_opt['second_blur_prob']:
            out = out.contiguous()
            out = filter2D(out, kernel2)
        # random resize
        updown_type = random.choices(
                ['up', 'down', 'keep'],
                self.degrade_opt['resize_prob2'],
                )[0]
        if updown_type == 'up':
            scale = random.uniform(1, self.degrade_opt['resize_range2'][1])
        elif updown_type == 'down':
            scale = random.uniform(self.degrade_opt['resize_range2'][0], 1)
        else:
            scale = 1
        mode = random.choice(['area', 'bilinear', 'bicubic'])
        out = torch.nn.functional.interpolate(
                out,
                size=(int(ori_h / self.degrade_opt['sf'] * scale),
                      int(ori_w / self.degrade_opt['sf'] * scale)),
                mode=mode,
                )
        # add noise
        gray_noise_prob = self.degrade_opt['gray_noise_prob2']
        if random.random() < self.degrade_opt['gaussian_noise_prob2']:
            out = random_add_gaussian_noise_pt(
                out,
                sigma_range=self.degrade_opt['noise_range2'],
                clip=True,
                rounds=False,
                gray_prob=gray_noise_prob,
                )
        else:
            out = random_add_poisson_noise_pt(
                out,
                scale_range=self.degrade_opt['poisson_scale_range2'],
                gray_prob=gray_noise_prob,
                clip=True,
                rounds=False,
                )

        # JPEG compression + the final sinc filter
        # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
        # as one operation.
        # We consider two orders:
        #   1. [resize back + sinc filter] + JPEG compression
        #   2. JPEG compression + [resize back + sinc filter]
        # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
        if random.random() < 0.5:
            # resize back + the final sinc filter
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            out = torch.nn.functional.interpolate(
                    out,
                    size=(ori_h // self.degrade_opt['sf'],
                          ori_w // self.degrade_opt['sf']),
                    mode=mode,
                    )
            out = out.contiguous()
            out = filter2D(out, sinc_kernel)
            # JPEG compression
            jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
            out = torch.clamp(out, 0, 1)
            out = self.jpeger(out, quality=jpeg_p)
        else:
            # JPEG compression
            jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
            out = torch.clamp(out, 0, 1)
            out = self.jpeger(out, quality=jpeg_p)
            # resize back + the final sinc filter
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            out = torch.nn.functional.interpolate(
                    out,
                    size=(ori_h // self.degrade_opt['sf'],
                          ori_w // self.degrade_opt['sf']),
                    mode=mode,
                    )
            out = out.contiguous()
            out = filter2D(out, sinc_kernel)

        # clamp and round
        im_lq = torch.clamp(out, 0, 1.0)

        # random crop
        gt_size = self.degrade_opt['gt_size']
        im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, self.degrade_opt['sf'])

        if self.degrade_opt['resize_lq']:
            im_lq = torch.nn.functional.interpolate(
                    im_lq,
                    size=(im_gt.size(-2),
                          im_gt.size(-1)),
                    mode='bicubic',
                    )

        if random.random() < self.degrade_opt['no_degradation_prob'] or torch.isnan(im_lq).any():
            im_lq = im_gt

        # sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
        im_lq = im_lq.contiguous()  # for the warning: grad and param do not obey the gradient layout contract
        im_lq = im_lq*2 - 1.0
        im_gt = im_gt*2 - 1.0

        if self.degrade_opt['random_size']:
            raise NotImplementedError
            im_lq, im_gt = self.randn_cropinput(im_lq, im_gt)

        im_lq = torch.clamp(im_lq, -1.0, 1.0)
        im_gt = torch.clamp(im_gt, -1.0, 1.0)

        return (im_lq, im_gt)