import torch import numpy as np from einops import rearrange from kornia.geometry.transform.crop2d import warp_affine from utils.matlab_cp2tform import get_similarity_transform_for_cv2 from torchvision.transforms import Pad REFERNCE_FACIAL_POINTS_RELATIVE = np.array([[38.29459953, 51.69630051], [72.53179932, 51.50139999], [56.02519989, 71.73660278], [41.54930115, 92.3655014], [70.72990036, 92.20410156] ]) / 112 # Original points are 112 * 96 added 8 to the x axis to make it 112 * 112 @torch.no_grad() def detect_face(images: torch.Tensor, mtcnn: torch.nn.Module) -> torch.Tensor: """ Detect faces in the images using MTCNN. If no face is detected, use the whole image. """ images = rearrange(images, "b c h w -> b h w c") if images.dtype != torch.uint8: images = ((images * 0.5 + 0.5) * 255).type(torch.uint8) # Unnormalize _, _, landmarks = mtcnn(images, landmarks=True) return landmarks def extract_faces_and_landmarks(images: torch.Tensor, output_size=112, mtcnn: torch.nn.Module = None, refernce_points=REFERNCE_FACIAL_POINTS_RELATIVE): """ detect faces in the images and crop them (in a differentiable way) to 112x112 using MTCNN. """ images = Pad(200)(images) landmarks_batched = detect_face(images, mtcnn=mtcnn) affine_transformations = [] invalid_indices = [] for i, landmarks in enumerate(landmarks_batched): if landmarks is None: invalid_indices.append(i) affine_transformations.append(np.eye(2, 3).astype(np.float32)) else: affine_transformations.append(get_similarity_transform_for_cv2(landmarks[0].astype(np.float32), refernce_points.astype(np.float32) * output_size)) affine_transformations = torch.from_numpy(np.stack(affine_transformations).astype(np.float32)).to(device=images.device, dtype=torch.float32) invalid_indices = torch.tensor(invalid_indices).to(device=images.device) fp_images = images.to(torch.float32) return warp_affine(fp_images, affine_transformations, dsize=(output_size, output_size)).to(dtype=images.dtype), invalid_indices