KEEP-docker / Dockerfile
fffiloni's picture
Update Dockerfile
d60f59d verified
raw
history blame
1.78 kB
FROM pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel
# Set environment variables
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y --no-install-recommends \
git \
cmake \
build-essential \
libgl1-mesa-glx \
libglib2.0-0 \
ffmpeg \
python3.8 \
python3-pip \
python3.8-dev \
&& rm -rf /var/lib/apt/lists/*
# Create a symlink for python
RUN ln -s /usr/bin/python3 /usr/bin/python
RUN useradd -m -u 1000 user
USER user
ENV HOME=/home/user \
PATH=/home/user/.local/bin:$PATH \
PYTHONPATH=$HOME/app \
PYTHONUNBUFFERED=1 \
GRADIO_ALLOW_FLAGGING=never \
GRADIO_NUM_PORTS=1 \
GRADIO_SERVER_NAME=0.0.0.0 \
GRADIO_THEME=huggingface \
GRADIO_SHARE=False \
SYSTEM=spaces
# Set CUDA_HOME environment variable
ENV CUDA_HOME=/usr/local/cuda-11.8
ENV TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0;7.5;8.0;8.6+PTX;8.9;9.0"
ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}
# Set the environment variable to specify the GPU device
ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
ENV CUDA_VISIBLE_DEVICES=0
# Set the working directory to the user's home directory
WORKDIR $HOME/app
# Clone the repository (adjust the URL if needed)
RUN git clone --recursive https://github.com/jnjaby/KEEP.git .
# Copy the app.py script and requirements file into the container
COPY --chown=user:user app.py .
COPY --chown=user:user requirements_HF.txt .
# Install Python dependencies
RUN pip install --upgrade pip && \
pip install -r requirements_HF.txt && \
pip install gradio && \
pip install "numpy<1.25,>=1.18" && \
pip install cupy-cuda11x && \
pip install ffmpeg-python dlib
# Install basicsr
RUN cd basicsr && python setup.py develop
# Command to run your application
CMD ["python", "app.py"]