import os import torch import gradio as gr import subprocess import datetime import sys def run_command(command): """Run a shell command and print its output.""" print(f"Running command: {' '.join(command)}") try: subprocess.check_call(command, shell=True) except subprocess.CalledProcessError as e: print(f"Error running command {command}: {e}") sys.exit(1) def check_for_mp4_in_outputs(given_folder): # Define the path to the outputs folder outputs_folder = given_folder # Check if the outputs folder exists if not os.path.exists(outputs_folder): return None # Check if there is a .mp4 file in the outputs folder mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')] # Return the path to the mp4 file if it exists if mp4_files: return os.path.join(outputs_folder, mp4_files[0]) else: return None def infer(input_video, cropped_and_aligned): torch.cuda.empty_cache() filepath = input_video # Get the current timestamp timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") output_folder_name = f"results_{timestamp}" if cropped_and_aligned is True: # Example: Run the inference script (replace with your actual command) run_command(f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --has_aligned --save_video -s=1") else: run_command(f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --draw_box --save_video -s=1 --bg_upsampler=realesrgan") torch.cuda.empty_cache() # Call the function and print the result this_infer_folder = os.path.splitext(os.path.basename(filepath))[0] joined_path = os.path.join(output_folder_name, this_infer_folder) mp4_file_path = check_for_mp4_in_outputs(joined_path) print(mp4_file_path) print(f"RESULT: {mp4_file_path}") return mp4_file_path result_video = gr.Video() with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# KEEP") gr.Markdown("## Kalman-Inspired Feature Propagation for Video Face Super-Resolution") gr.HTML("""
""") with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") is_cropped_and_aligned = gr.Checkbox(label="Synthetic data", info="Is your input video ready with cropped and aligned faces ?", value=False) submit_btn = gr.Button("Submit") gr.Examples( examples = [ ["./assets/examples/synthetic_1.mp4", True], ["./assets/examples/synthetic_2.mp4", True], ["./assets/examples/synthetic_3.mp4", True], ["./assets/examples/synthetic_4.mp4", True], ["./assets/examples/real_1.mp4", False], ["./assets/examples/real_2.mp4", False], ["./assets/examples/real_3.mp4", False], ["./assets/examples/real_4.mp4", False] ], fn = infer, inputs = [input_video, is_cropped_and_aligned], outputs = [result_video], run_on_click = False, cache_examples = "lazy" ) with gr.Column(): result_video.render() submit_btn.click( fn = infer, inputs = [input_video, is_cropped_and_aligned], outputs = [result_video], show_api=False ) demo.queue().launch(show_error=True, show_api=False)