Spaces:
Running
on
L4
Running
on
L4
# -------------------------------------------------------- | |
# Based on BEiT, timm, DINO and DeiT code bases | |
# https://github.com/microsoft/unilm/tree/master/beit | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/facebookresearch/deit | |
# https://github.com/facebookresearch/dino | |
# --------------------------------------------------------' | |
from functools import partial | |
import math | |
import warnings | |
import numpy as np | |
import collections.abc | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as cp | |
from itertools import repeat | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
def drop_path(x, drop_prob: float = 0.0, training: bool = False): | |
""" | |
Adapted from timm codebase | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
def _cfg(url="", **kwargs): | |
return { | |
"url": url, | |
"num_classes": 400, | |
"input_size": (3, 224, 224), | |
"pool_size": None, | |
"crop_pct": 0.9, | |
"interpolation": "bicubic", | |
"mean": (0.5, 0.5, 0.5), | |
"std": (0.5, 0.5, 0.5), | |
**kwargs, | |
} | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
# x = self.drop(x) | |
# commit this for the orignal BERT implement | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class CosAttention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
# self.scale = qk_scale or head_dim**-0.5 | |
# DO NOT RENAME [self.scale] (for no weight decay) | |
if qk_scale is None: | |
self.scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) | |
else: | |
self.scale = qk_scale | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.v_bias = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv_bias = None | |
if self.q_bias is not None: | |
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) | |
# torch.log(torch.tensor(1. / 0.01)) = 4.6052 | |
logit_scale = torch.clamp(self.scale, max=4.6052).exp() | |
attn = attn * logit_scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.v_bias = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv_bias = None | |
if self.q_bias is not None: | |
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
init_values=None, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
attn_head_dim=None, | |
cos_attn=False, | |
): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
if cos_attn: | |
self.attn = CosAttention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
attn_head_dim=attn_head_dim, | |
) | |
else: | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
attn_head_dim=attn_head_dim, | |
) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
if init_values > 0: | |
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
def forward(self, x): | |
if self.gamma_1 is None: | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_spatial_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) | |
num_patches = num_spatial_patches * (num_frames // tubelet_size) | |
self.img_size = img_size | |
self.tubelet_size = tubelet_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv3d( | |
in_channels=in_chans, | |
out_channels=embed_dim, | |
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), | |
stride=(self.tubelet_size, patch_size[0], patch_size[1]), | |
) | |
def forward(self, x, **kwargs): | |
B, C, T, H, W = x.shape | |
assert ( | |
H == self.img_size[0] and W == self.img_size[1] | |
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
# b, c, l -> b, l, c | |
# [1, 1408, 8, 16, 16] -> [1, 1408, 2048] -> [1, 2048, 1408] | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
# sin-cos position encoding | |
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31 | |
def get_sinusoid_encoding_table(n_position, d_hid): | |
"""Sinusoid position encoding table""" | |
# TODO: make it with torch instead of numpy | |
def get_position_angle_vec(position): | |
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] | |
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) | |
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i | |
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 | |
return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) | |
class VisionTransformer(nn.Module): | |
"""Vision Transformer with support for patch or hybrid CNN input stage""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=1000, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
head_drop_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
init_values=0.0, | |
use_learnable_pos_emb=False, | |
init_scale=0.0, | |
all_frames=16, | |
tubelet_size=2, | |
use_mean_pooling=True, | |
with_cp=False, | |
cos_attn=False, | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
# num_features for consistency with other models | |
self.num_features = self.embed_dim = embed_dim | |
self.tubelet_size = tubelet_size | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
num_frames=all_frames, | |
tubelet_size=tubelet_size, | |
) | |
num_patches = self.patch_embed.num_patches | |
self.with_cp = with_cp | |
if use_learnable_pos_emb: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
else: | |
# sine-cosine positional embeddings is on the way | |
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
init_values=init_values, | |
cos_attn=cos_attn, | |
) | |
for i in range(depth) | |
] | |
) | |
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) | |
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None | |
self.head_dropout = nn.Dropout(head_drop_rate) | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if use_learnable_pos_emb: | |
trunc_normal_(self.pos_embed, std=0.02) | |
self.apply(self._init_weights) | |
self.head.weight.data.mul_(init_scale) | |
self.head.bias.data.mul_(init_scale) | |
self.num_frames = all_frames | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token"} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=""): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def interpolate_pos_encoding(self, t): | |
T = 8 | |
t0 = t // self.tubelet_size | |
if T == t0: | |
return self.pos_embed | |
dim = self.pos_embed.shape[-1] | |
patch_pos_embed = self.pos_embed.permute(0, 2, 1).reshape(1, dim, 8, 16, 16) | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
t0 = t0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed, | |
scale_factor=(t0 / T, 1, 1), | |
mode="trilinear", | |
) | |
assert int(t0) == patch_pos_embed.shape[-3] | |
patch_pos_embed = patch_pos_embed.reshape(1, dim, -1).permute(0, 2, 1) | |
return patch_pos_embed | |
def forward_features(self, x): | |
# [1, 3, 16, 224, 224] | |
B = x.size(0) | |
T = x.size(2) | |
# [1, 2048, 1408] | |
x = self.patch_embed(x) | |
if self.pos_embed is not None: | |
x = x + self.interpolate_pos_encoding(T).expand(B, -1, -1).type_as(x).to(x.device).clone().detach() | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
if self.with_cp: | |
x = cp.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
# return self.fc_norm(x) | |
if self.fc_norm is not None: | |
return self.fc_norm(x.mean(1)) | |
else: | |
return self.norm(x[:, 0]) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head_dropout(x) | |
x = self.head(x) | |
return x | |
def vit_giant_patch14_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=14, | |
embed_dim=1408, | |
depth=40, | |
num_heads=16, | |
mlp_ratio=48 / 11, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
model.default_cfg = _cfg() | |
return model | |