Spaces:
Runtime error
Runtime error
File size: 9,677 Bytes
6cd5133 b4acdb1 dfba2d4 eb23cc1 6cd5133 7c33227 22c4e50 7c33227 eb23cc1 6cd5133 b4acdb1 eb23cc1 7c33227 eb23cc1 7c33227 eb23cc1 6cd5133 b4acdb1 6cd5133 c6e84c6 7c33227 6cd5133 b4acdb1 1f4d91a 6cd5133 b4acdb1 22c4e50 f4d6d25 b4acdb1 6cd5133 f4d6d25 6cd5133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os, random, time
import uuid
import tempfile, shutil
from pydub import AudioSegment
import gradio as gr
from huggingface_hub import snapshot_download
# Download models
os.makedirs("checkpoints", exist_ok=True)
# List of subdirectories to create inside "checkpoints"
subfolders = [
"vae",
"wav2vec2",
"emotion2vec_plus_large"
]
# Create each subdirectory
for subfolder in subfolders:
os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True)
snapshot_download(
repo_id = "memoavatar/memo",
local_dir = "./checkpoints"
)
snapshot_download(
repo_id = "stabilityai/sd-vae-ft-mse",
local_dir = "./checkpoints/vae"
)
snapshot_download(
repo_id = "facebook/wav2vec2-base-960h",
local_dir = "./checkpoints/wav2vec2"
)
snapshot_download(
repo_id = "emotion2vec/emotion2vec_plus_large",
local_dir = "./checkpoints/emotion2vec_plus_large"
)
import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from tqdm import tqdm
from memo.models.audio_proj import AudioProjModel
from memo.models.image_proj import ImageProjModel
from memo.models.unet_2d_condition import UNet2DConditionModel
from memo.models.unet_3d import UNet3DConditionModel
from memo.pipelines.video_pipeline import VideoPipeline
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio
from memo.utils.vision_utils import preprocess_image, tensor_to_video
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
weight_dtype = torch.bfloat16
with torch.inference_mode():
vae = AutoencoderKL.from_pretrained("./checkpoints/vae").to(device=device, dtype=weight_dtype)
reference_net = UNet2DConditionModel.from_pretrained("./checkpoints", subfolder="reference_net", use_safetensors=True)
diffusion_net = UNet3DConditionModel.from_pretrained("./checkpoints", subfolder="diffusion_net", use_safetensors=True)
image_proj = ImageProjModel.from_pretrained("./checkpoints", subfolder="image_proj", use_safetensors=True)
audio_proj = AudioProjModel.from_pretrained("./checkpoints", subfolder="audio_proj", use_safetensors=True)
vae.requires_grad_(False).eval()
reference_net.requires_grad_(False).eval()
diffusion_net.requires_grad_(False).eval()
image_proj.requires_grad_(False).eval()
audio_proj.requires_grad_(False).eval()
reference_net.enable_xformers_memory_efficient_attention()
diffusion_net.enable_xformers_memory_efficient_attention()
noise_scheduler = FlowMatchEulerDiscreteScheduler()
pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
pipeline.to(device=device, dtype=weight_dtype)
def process_audio(file_path, temp_dir):
# Load the audio file
audio = AudioSegment.from_file(file_path)
# Check and cut the audio if longer than 4 seconds
max_duration = 8 * 1000 # 4 seconds in milliseconds
if len(audio) > max_duration:
audio = audio[:max_duration]
# Save the processed audio in the temporary directory
output_path = os.path.join(temp_dir, "trimmed_audio.wav")
audio.export(output_path, format="wav")
# Return the path to the trimmed file
print(f"Processed audio saved at: {output_path}")
return output_path
@torch.inference_mode()
def generate(input_video, input_audio, seed, progress=gr.Progress(track_tqdm=True)):
is_shared_ui = True if "fffiloni/MEMO" in os.environ['SPACE_ID'] else False
temp_dir = None
if is_shared_ui:
temp_dir = tempfile.mkdtemp()
input_audio = process_audio(input_audio, temp_dir)
print(f"Processed file was stored temporarily at: {input_audio}")
resolution = 512
num_generated_frames_per_clip = 16
fps = 30
num_init_past_frames = 2
num_past_frames = 16
inference_steps = 20
cfg_scale = 3.5
if seed == 0:
random.seed(int(time.time()))
seed = random.randint(0, 18446744073709551615)
generator = torch.manual_seed(seed)
img_size = (resolution, resolution)
pixel_values, face_emb = preprocess_image(face_analysis_model="./checkpoints/misc/face_analysis", image_path=input_video, image_size=resolution)
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
cache_dir = os.path.join(output_dir, "audio_preprocess")
os.makedirs(cache_dir, exist_ok=True)
input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav"))
if is_shared_ui:
# Clean up the temporary directory
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
print(f"Temporary directory {temp_dir} deleted.")
audio_emb, audio_length = preprocess_audio(
wav_path=input_audio,
num_generated_frames_per_clip=num_generated_frames_per_clip,
fps=fps,
wav2vec_model="./checkpoints/wav2vec2",
vocal_separator_model="./checkpoints/misc/vocal_separator/Kim_Vocal_2.onnx",
cache_dir=cache_dir,
device=device,
)
audio_emotion, num_emotion_classes = extract_audio_emotion_labels(
model="./checkpoints",
wav_path=input_audio,
emotion2vec_model="./checkpoints/emotion2vec_plus_large",
audio_length=audio_length,
device=device,
)
video_frames = []
num_clips = audio_emb.shape[0] // num_generated_frames_per_clip
for t in tqdm(range(num_clips), desc="Generating video clips"):
if len(video_frames) == 0:
past_frames = pixel_values.repeat(num_init_past_frames, 1, 1, 1)
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
else:
past_frames = video_frames[-1][0]
past_frames = past_frames.permute(1, 0, 2, 3)
past_frames = past_frames[0 - num_past_frames :]
past_frames = past_frames * 2.0 - 1.0
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)
audio_tensor = (audio_emb[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])].unsqueeze(0).to(device=audio_proj.device, dtype=audio_proj.dtype))
audio_tensor = audio_proj(audio_tensor)
audio_emotion_tensor = audio_emotion[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])]
pipeline_output = pipeline(
ref_image=pixel_values_ref_img,
audio_tensor=audio_tensor,
audio_emotion=audio_emotion_tensor,
emotion_class_num=num_emotion_classes,
face_emb=face_emb,
width=img_size[0],
height=img_size[1],
video_length=num_generated_frames_per_clip,
num_inference_steps=inference_steps,
guidance_scale=cfg_scale,
generator=generator,
)
video_frames.append(pipeline_output.videos)
video_frames = torch.cat(video_frames, dim=2)
video_frames = video_frames.squeeze(0)
video_frames = video_frames[:, :audio_length]
# Save the output video
unique_id = str(uuid.uuid4())
video_path = os.path.join(output_dir, f"memo-{seed}_{unique_id}.mp4")
tensor_to_video(video_frames, video_path, input_audio, fps=fps)
return video_path
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# MEMO: Memory-Guided Diffusion for Expressive Talking Video Generation")
gr.Markdown("Note: On fffiloni's shared UI, audio length is trimmed to max 8 seconds, so everyone can get a taste without to much waiting time in queue.")
gr.Markdown("Duplicate the space to skip the queue and enjoy full length capacity.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/memoavatar/memo">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://memoavatar.github.io/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2412.04448">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/MEMO?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
input_video = gr.Image(label="Upload Input Image", type="filepath")
input_audio = gr.Audio(label="Upload Input Audio", type="filepath")
seed = gr.Number(label="Seed (0 for Random)", value=0, precision=0)
with gr.Column():
video_output = gr.Video(label="Generated Video")
generate_button = gr.Button("Generate")
generate_button.click(
fn=generate,
inputs=[input_video, input_audio, seed],
outputs=[video_output],
)
demo.queue().launch(share=False, show_api=False, show_error=True) |