Spaces:
Runtime error
Runtime error
File size: 1,787 Bytes
1a9b87d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import torch
from diffusers import ConfigMixin, ModelMixin
from einops import rearrange
from torch import nn
class AudioProjModel(ModelMixin, ConfigMixin):
def __init__(
self,
seq_len=5,
blocks=12, # add a new parameter blocks
channels=768, # add a new parameter channels
intermediate_dim=512,
output_dim=768,
context_tokens=32,
):
super().__init__()
self.seq_len = seq_len
self.blocks = blocks
self.channels = channels
self.input_dim = seq_len * blocks * channels # update input_dim to be the product of blocks and channels.
self.intermediate_dim = intermediate_dim
self.context_tokens = context_tokens
self.output_dim = output_dim
# define multiple linear layers
self.proj1 = nn.Linear(self.input_dim, intermediate_dim)
self.proj2 = nn.Linear(intermediate_dim, intermediate_dim)
self.proj3 = nn.Linear(intermediate_dim, context_tokens * output_dim)
self.norm = nn.LayerNorm(output_dim)
def forward(self, audio_embeds):
video_length = audio_embeds.shape[1]
audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c")
batch_size, window_size, blocks, channels = audio_embeds.shape
audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels)
audio_embeds = torch.relu(self.proj1(audio_embeds))
audio_embeds = torch.relu(self.proj2(audio_embeds))
context_tokens = self.proj3(audio_embeds).reshape(batch_size, self.context_tokens, self.output_dim)
context_tokens = self.norm(context_tokens)
context_tokens = rearrange(context_tokens, "(bz f) m c -> bz f m c", f=video_length)
return context_tokens
|