File size: 18,544 Bytes
459fa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

from typing import Any, Dict, Union
import torchvision.transforms as transforms
import torch
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from tqdm.auto import tqdm
from PIL import Image
from diffusers import (
    DiffusionPipeline,
    ControlNetModel,
    DDIMScheduler,
    AutoencoderKL,
)
from diffusers.utils import BaseOutput
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor
from transformers import CLIPVisionModelWithProjection

from utils.image_util import resize_max_res,chw2hwc
from src.point_network import PointNet
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel


class MangaNinjiaPipelineOutput(BaseOutput):
    img_np: np.ndarray
    img_pil: Image.Image
    to_save_dict: dict


class MangaNinjiaPipeline(DiffusionPipeline):
    rgb_latent_scale_factor = 0.18215
    
    def __init__(self,
        reference_unet: RefUNet2DConditionModel,
        controlnet: ControlNetModel,
        denoising_unet: UNet2DConditionModel,
        vae: AutoencoderKL,
        refnet_tokenizer: CLIPTokenizer,
        refnet_text_encoder: CLIPTextModel,
        refnet_image_encoder: CLIPVisionModelWithProjection,
        controlnet_tokenizer: CLIPTokenizer,
        controlnet_text_encoder: CLIPTextModel,
        controlnet_image_encoder: CLIPVisionModelWithProjection,
        scheduler: DDIMScheduler,
        point_net: PointNet
    ):
        super().__init__()
            
        self.register_modules(
            reference_unet=reference_unet,
            controlnet=controlnet,
            denoising_unet=denoising_unet,       
            vae=vae,
            refnet_tokenizer=refnet_tokenizer,
            refnet_text_encoder=refnet_text_encoder,
            refnet_image_encoder=refnet_image_encoder,
            controlnet_tokenizer=controlnet_tokenizer,
            controlnet_text_encoder=controlnet_text_encoder,
            controlnet_image_encoder=controlnet_image_encoder,
            point_net=point_net,
            scheduler=scheduler,
        )
        self.empty_text_embed = None
        self.clip_image_processor = CLIPImageProcessor()
        
    @torch.no_grad()
    def __call__(
        self,
        is_lineart: bool,
        ref1: Image.Image,
        raw2: Image.Image,
        edit2: Image.Image,
        denosing_steps: int = 20,
        processing_res: int = 512,
        match_input_res: bool = True,
        batch_size: int = 0,
        show_progress_bar: bool = True,
        guidance_scale_ref: float = 7,
        guidance_scale_point: float = 12,
        preprocessor=None,
        generator=None,
        point_ref=None,
        point_main=None,
    ) -> MangaNinjiaPipelineOutput:

        device = self.device
        
        input_size = raw2.size
        point_ref=point_ref.float().to(device)
        point_main=point_main.float().to(device)
        def img2embeds(img, image_enc):
            clip_image = self.clip_image_processor.preprocess(
                img, return_tensors="pt"
            ).pixel_values
            clip_image_embeds = image_enc(
                clip_image.to(device, dtype=image_enc.dtype)
            ).image_embeds
            encoder_hidden_states = clip_image_embeds.unsqueeze(1)
            return encoder_hidden_states
        if self.reference_unet:
            refnet_encoder_hidden_states = img2embeds(ref1, self.refnet_image_encoder)
        else:
            refnet_encoder_hidden_states = None
        if self.controlnet:
            controlnet_encoder_hidden_states = img2embeds(ref1, self.controlnet_image_encoder)
        else:
            controlnet_encoder_hidden_states = None

        prompt = ""
        def prompt2embeds(prompt, tokenizer, text_encoder):
            text_inputs = tokenizer(
                prompt,
                padding="do_not_pad",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids.to(device) #[1,2]
            empty_text_embed = text_encoder(text_input_ids)[0].to(self.dtype)
            uncond_encoder_hidden_states = empty_text_embed.repeat((1, 1, 1))[:,0,:].unsqueeze(0)
            return uncond_encoder_hidden_states
        if self.reference_unet:
            refnet_uncond_encoder_hidden_states = prompt2embeds(prompt, self.refnet_tokenizer, self.refnet_text_encoder)
        else:
            refnet_uncond_encoder_hidden_states = None
        if self.controlnet:
            controlnet_uncond_encoder_hidden_states = prompt2embeds(prompt, self.controlnet_tokenizer, self.controlnet_text_encoder)
        else:
            controlnet_uncond_encoder_hidden_states = None

        do_classifier_free_guidance = guidance_scale_ref > 1.0
        
        # adjust the input resolution.
        if not match_input_res:
            assert (
                processing_res is not None                
            )," Value Error: `resize_output_back` is only valid with "
        
        assert processing_res >= 0
        assert denosing_steps >= 1
        
        # --------------- Image Processing ------------------------
        # Resize image
        if processing_res > 0:
            def resize_img(img):
                img = resize_max_res(img, max_edge_resolution=processing_res)
                return img
            ref1 = resize_img(ref1)
            raw2 = resize_img(raw2)
            edit2 = resize_img(edit2)
        
        # Normalize image
        def normalize_img(img):
            img = img.convert("RGB")
            img = np.array(img)

            # Normalize RGB Values.
            rgb = np.transpose(img,(2,0,1))
            rgb_norm = rgb / 255.0 * 2.0 - 1.0
            rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
            rgb_norm = rgb_norm.to(device)
            img = rgb_norm
            assert img.min() >= -1.0 and img.max() <= 1.0
            return img
        raw2_real = raw2.convert('L')
        ref1 = normalize_img(ref1)
        raw2 = normalize_img(raw2)
        edit2 = normalize_img(edit2)
        single_rgb_dataset = TensorDataset(ref1[None], raw2[None], edit2[None])

        
        # find the batch size
        if batch_size>0:
            _bs = batch_size
        else:
            _bs = 1
        point_ref=self.point_net(point_ref)
        point_main=self.point_net(point_main)
        single_rgb_loader = DataLoader(single_rgb_dataset,batch_size=_bs,shuffle=False)

        # classifier guidance
        if do_classifier_free_guidance:
            if self.reference_unet:
                refnet_encoder_hidden_states = torch.cat(
                    [refnet_uncond_encoder_hidden_states, refnet_encoder_hidden_states,refnet_encoder_hidden_states], dim=0
                )
            else:
                refnet_encoder_hidden_states = None

            if self.controlnet:
                controlnet_encoder_hidden_states = torch.cat(
                    [controlnet_uncond_encoder_hidden_states, controlnet_encoder_hidden_states,controlnet_encoder_hidden_states], dim=0
                )
            else:
                controlnet_encoder_hidden_states = None

        if self.reference_unet:
            reference_control_writer = ReferenceAttentionControl(
                self.reference_unet,
                do_classifier_free_guidance=do_classifier_free_guidance,
                mode="write",
                batch_size=batch_size,
                fusion_blocks="full",
            )
            reference_control_reader = ReferenceAttentionControl(
                self.denoising_unet,
                do_classifier_free_guidance=do_classifier_free_guidance,
                mode="read",
                batch_size=batch_size,
                fusion_blocks="full",
            )
        else:
            reference_control_writer = None
            reference_control_reader = None
            
        if show_progress_bar:
            iterable_bar = tqdm(
                single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
            )
        else:
            iterable_bar = single_rgb_loader
        
        assert len(iterable_bar) == 1
        for batch in iterable_bar:
            (ref1, raw2, edit2) = batch  # here the image is still around 0-1
            if is_lineart:
                raw2 = raw2_real
            img_pred, to_save_dict = self.single_infer(
                is_lineart=is_lineart,
                ref1=ref1,
                raw2=raw2,
                edit2=edit2,
                num_inference_steps=denosing_steps,
                show_pbar=show_progress_bar,
                guidance_scale_ref=guidance_scale_ref,
                guidance_scale_point=guidance_scale_point,
                refnet_encoder_hidden_states=refnet_encoder_hidden_states,
                controlnet_encoder_hidden_states=controlnet_encoder_hidden_states,
                reference_control_writer=reference_control_writer,
                reference_control_reader=reference_control_reader,
                preprocessor=preprocessor,
                generator=generator,
                point_ref=point_ref,
                point_main=point_main
            )
            for k, v in to_save_dict.items():
                if k =='edge2_black':
                    to_save_dict[k] = Image.fromarray(
                   ((to_save_dict['edge2_black'][:,0].squeeze().detach().cpu().numpy() + 1.) / 2 * 255).astype(np.uint8)
                    )
                else:
                    try:
                        to_save_dict[k] = Image.fromarray(
                        chw2hwc(((v.squeeze().detach().cpu().numpy() + 1.) / 2 * 255).astype(np.uint8))
                        )
                    except:
                        import ipdb;ipdb.set_trace()
        
        torch.cuda.empty_cache()  # clear vram cache for ensembling
        
        # ----------------- Post processing -----------------        
        # Convert to numpy
        img_pred = img_pred.squeeze().cpu().numpy().astype(np.float32)
        img_pred_np = (((img_pred + 1.) / 2.) * 255).astype(np.uint8)
        img_pred_np = chw2hwc(img_pred_np)
        img_pred_pil = Image.fromarray(img_pred_np)

        # Resize back to original resolution
        if match_input_res:
            img_pred_pil = img_pred_pil.resize(input_size)
            img_pred_np = np.asarray(img_pred_pil)        

        return MangaNinjiaPipelineOutput(
            img_np=img_pred_np,
            img_pil=img_pred_pil,
            to_save_dict=to_save_dict
        )

    
    def __encode_empty_text(self):
        """
        Encode text embedding for empty prompt
        """
        prompt = ""
        text_inputs = self.tokenizer(
            prompt,
            padding="do_not_pad",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
        # print(text_input_ids.shape)
        self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]

    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
        # get the original timestep using init_timestep
        if denoising_start is None:
            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
            t_start = max(num_inference_steps - init_timestep, 0)
        else:
            t_start = 0

        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]

        # Strength is irrelevant if we directly request a timestep to start at;
        # that is, strength is determined by the denoising_start instead.
        if denoising_start is not None:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_start * self.scheduler.config.num_train_timesteps)
                )
            )
            timesteps = list(filter(lambda ts: ts < discrete_timestep_cutoff, timesteps))
            return torch.tensor(timesteps), len(timesteps)

        return timesteps, num_inference_steps - t_start
        
    @torch.no_grad()
    def single_infer(
        self,
        is_lineart: bool,
        ref1: torch.Tensor,
        raw2: torch.Tensor,
        edit2: torch.Tensor,
        num_inference_steps: int,
        show_pbar: bool,
        guidance_scale_ref: float,
        guidance_scale_point: float,
        refnet_encoder_hidden_states: torch.Tensor,
        controlnet_encoder_hidden_states: torch.Tensor,
        reference_control_writer: ReferenceAttentionControl,
        reference_control_reader: ReferenceAttentionControl,
        preprocessor,
        generator,
        point_ref,
        point_main
    ):
        do_classifier_free_guidance = guidance_scale_ref > 1.0
        device = ref1.device
        to_save_dict = {
            'ref1': ref1,
        }
        
        # Set timesteps: inherit from the diffuison pipeline
        self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
        timesteps = self.scheduler.timesteps  # [T]
        
        # encode image
        ref1_latents = self.encode_RGB(ref1, generator=generator) # 1/8 Resolution with a channel nums of 4. 
        edge2_src = raw2

        timesteps_add,_=self.get_timesteps(num_inference_steps, 1.0, device, denoising_start=None)
        if is_lineart is not True:
            edge2 = preprocessor(edge2_src)
        else:
            gray_image_np = np.array(edge2_src)
            gray_image_np = gray_image_np / 255.0
            edge2 = torch.from_numpy(gray_image_np.astype(np.float32)).unsqueeze(0).unsqueeze(0).cuda()
        edge2[edge2<=0.24]=0
        edge2_black = edge2.repeat(1, 3, 1, 1) * 2 - 1.
        to_save_dict['edge2_black']=edge2_black

        edge2 = edge2.repeat(1, 3, 1, 1) * 2 - 1.
        to_save_dict['edge2'] = (1-((edge2+1.)/2))*2-1
        
        noisy_edit2_latents = torch.randn(
            ref1_latents.shape, device=device, dtype=self.dtype
        )  # [B, 4, H/8, W/8]
            
   
        # Denoising loop
        if show_pbar:
            iterable = tqdm(
                enumerate(timesteps),
                total=len(timesteps),
                leave=False,
                desc=" " * 4 + "Diffusion denoising",
            )
        else:
            iterable = enumerate(timesteps)

        for i, t in iterable:
            
            refnet_input = ref1_latents
            controlnet_inputs = (noisy_edit2_latents, edge2)
            unet_input = torch.cat([noisy_edit2_latents], dim=1)

            if i == 0:
                if self.reference_unet:
                    self.reference_unet(
                        refnet_input.repeat(
                            (3 if do_classifier_free_guidance else 1), 1, 1, 1
                        ),
                        torch.zeros_like(t),
                        
                        encoder_hidden_states=refnet_encoder_hidden_states,
                        return_dict=False,
                    )
                    reference_control_reader.update(reference_control_writer,point_embedding_ref=point_ref,point_embedding_main=point_main)#size不对

            if self.controlnet:
                noisy_latents, controlnet_cond = controlnet_inputs
                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    noisy_latents.repeat(
                        (3 if do_classifier_free_guidance else 1), 1, 1, 1
                    ),
                    t,
                    encoder_hidden_states=controlnet_encoder_hidden_states,
                    controlnet_cond=controlnet_cond.repeat(
                        (3 if do_classifier_free_guidance else 1), 1, 1, 1
                    ),
                    return_dict=False,
                )
            else:
                down_block_res_samples, mid_block_res_sample = None, None

            # predict the noise residual
            noise_pred = self.denoising_unet(
                unet_input.repeat(
                    (3 if do_classifier_free_guidance else 1), 1, 1, 1
                ).to(dtype=self.denoising_unet.dtype), 
                t, 
                encoder_hidden_states=refnet_encoder_hidden_states,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
            ).sample  # [B, 4, h, w]
            noise_pred_uncond, noise_pred_ref, noise_pred_point = noise_pred.chunk(3)
            noise_pred_1 = noise_pred_uncond + guidance_scale_ref * (
                noise_pred_ref - noise_pred_uncond
            )
            noise_pred_2 = noise_pred_ref + guidance_scale_point * (
                noise_pred_point - noise_pred_ref
            )
            noise_pred=(noise_pred_1+noise_pred_2)/2
            noisy_edit2_latents = self.scheduler.step(noise_pred, t, noisy_edit2_latents).prev_sample
        
        reference_control_reader.clear()
        reference_control_writer.clear()
        torch.cuda.empty_cache()

        # clip prediction
        edit2 = self.decode_RGB(noisy_edit2_latents)
        edit2 = torch.clip(edit2, -1.0, 1.0)

        return edit2, to_save_dict
        
    
    def encode_RGB(self, rgb_in: torch.Tensor, generator) -> torch.Tensor:
        """
        Encode RGB image into latent.

        Args:
            rgb_in (`torch.Tensor`):
                Input RGB image to be encoded.

        Returns:
            `torch.Tensor`: Image latent.
        """
        
        # generator = None
        rgb_latent = self.vae.encode(rgb_in).latent_dist.sample(generator)
        rgb_latent = rgb_latent * self.rgb_latent_scale_factor
        return rgb_latent
    
    def decode_RGB(self, rgb_latent: torch.Tensor) -> torch.Tensor:
        """
        Decode depth latent into depth map.

        Args:
            rgb_latent (`torch.Tensor`):
                Depth latent to be decoded.

        Returns:
            `torch.Tensor`: Decoded depth map.
        """

        rgb_latent = rgb_latent / self.rgb_latent_scale_factor
        rgb_out = self.vae.decode(rgb_latent, return_dict=False)[0]
        return rgb_out