Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,544 Bytes
459fa69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
from typing import Any, Dict, Union
import torchvision.transforms as transforms
import torch
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from tqdm.auto import tqdm
from PIL import Image
from diffusers import (
DiffusionPipeline,
ControlNetModel,
DDIMScheduler,
AutoencoderKL,
)
from diffusers.utils import BaseOutput
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor
from transformers import CLIPVisionModelWithProjection
from utils.image_util import resize_max_res,chw2hwc
from src.point_network import PointNet
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel
class MangaNinjiaPipelineOutput(BaseOutput):
img_np: np.ndarray
img_pil: Image.Image
to_save_dict: dict
class MangaNinjiaPipeline(DiffusionPipeline):
rgb_latent_scale_factor = 0.18215
def __init__(self,
reference_unet: RefUNet2DConditionModel,
controlnet: ControlNetModel,
denoising_unet: UNet2DConditionModel,
vae: AutoencoderKL,
refnet_tokenizer: CLIPTokenizer,
refnet_text_encoder: CLIPTextModel,
refnet_image_encoder: CLIPVisionModelWithProjection,
controlnet_tokenizer: CLIPTokenizer,
controlnet_text_encoder: CLIPTextModel,
controlnet_image_encoder: CLIPVisionModelWithProjection,
scheduler: DDIMScheduler,
point_net: PointNet
):
super().__init__()
self.register_modules(
reference_unet=reference_unet,
controlnet=controlnet,
denoising_unet=denoising_unet,
vae=vae,
refnet_tokenizer=refnet_tokenizer,
refnet_text_encoder=refnet_text_encoder,
refnet_image_encoder=refnet_image_encoder,
controlnet_tokenizer=controlnet_tokenizer,
controlnet_text_encoder=controlnet_text_encoder,
controlnet_image_encoder=controlnet_image_encoder,
point_net=point_net,
scheduler=scheduler,
)
self.empty_text_embed = None
self.clip_image_processor = CLIPImageProcessor()
@torch.no_grad()
def __call__(
self,
is_lineart: bool,
ref1: Image.Image,
raw2: Image.Image,
edit2: Image.Image,
denosing_steps: int = 20,
processing_res: int = 512,
match_input_res: bool = True,
batch_size: int = 0,
show_progress_bar: bool = True,
guidance_scale_ref: float = 7,
guidance_scale_point: float = 12,
preprocessor=None,
generator=None,
point_ref=None,
point_main=None,
) -> MangaNinjiaPipelineOutput:
device = self.device
input_size = raw2.size
point_ref=point_ref.float().to(device)
point_main=point_main.float().to(device)
def img2embeds(img, image_enc):
clip_image = self.clip_image_processor.preprocess(
img, return_tensors="pt"
).pixel_values
clip_image_embeds = image_enc(
clip_image.to(device, dtype=image_enc.dtype)
).image_embeds
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
return encoder_hidden_states
if self.reference_unet:
refnet_encoder_hidden_states = img2embeds(ref1, self.refnet_image_encoder)
else:
refnet_encoder_hidden_states = None
if self.controlnet:
controlnet_encoder_hidden_states = img2embeds(ref1, self.controlnet_image_encoder)
else:
controlnet_encoder_hidden_states = None
prompt = ""
def prompt2embeds(prompt, tokenizer, text_encoder):
text_inputs = tokenizer(
prompt,
padding="do_not_pad",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(device) #[1,2]
empty_text_embed = text_encoder(text_input_ids)[0].to(self.dtype)
uncond_encoder_hidden_states = empty_text_embed.repeat((1, 1, 1))[:,0,:].unsqueeze(0)
return uncond_encoder_hidden_states
if self.reference_unet:
refnet_uncond_encoder_hidden_states = prompt2embeds(prompt, self.refnet_tokenizer, self.refnet_text_encoder)
else:
refnet_uncond_encoder_hidden_states = None
if self.controlnet:
controlnet_uncond_encoder_hidden_states = prompt2embeds(prompt, self.controlnet_tokenizer, self.controlnet_text_encoder)
else:
controlnet_uncond_encoder_hidden_states = None
do_classifier_free_guidance = guidance_scale_ref > 1.0
# adjust the input resolution.
if not match_input_res:
assert (
processing_res is not None
)," Value Error: `resize_output_back` is only valid with "
assert processing_res >= 0
assert denosing_steps >= 1
# --------------- Image Processing ------------------------
# Resize image
if processing_res > 0:
def resize_img(img):
img = resize_max_res(img, max_edge_resolution=processing_res)
return img
ref1 = resize_img(ref1)
raw2 = resize_img(raw2)
edit2 = resize_img(edit2)
# Normalize image
def normalize_img(img):
img = img.convert("RGB")
img = np.array(img)
# Normalize RGB Values.
rgb = np.transpose(img,(2,0,1))
rgb_norm = rgb / 255.0 * 2.0 - 1.0
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
rgb_norm = rgb_norm.to(device)
img = rgb_norm
assert img.min() >= -1.0 and img.max() <= 1.0
return img
raw2_real = raw2.convert('L')
ref1 = normalize_img(ref1)
raw2 = normalize_img(raw2)
edit2 = normalize_img(edit2)
single_rgb_dataset = TensorDataset(ref1[None], raw2[None], edit2[None])
# find the batch size
if batch_size>0:
_bs = batch_size
else:
_bs = 1
point_ref=self.point_net(point_ref)
point_main=self.point_net(point_main)
single_rgb_loader = DataLoader(single_rgb_dataset,batch_size=_bs,shuffle=False)
# classifier guidance
if do_classifier_free_guidance:
if self.reference_unet:
refnet_encoder_hidden_states = torch.cat(
[refnet_uncond_encoder_hidden_states, refnet_encoder_hidden_states,refnet_encoder_hidden_states], dim=0
)
else:
refnet_encoder_hidden_states = None
if self.controlnet:
controlnet_encoder_hidden_states = torch.cat(
[controlnet_uncond_encoder_hidden_states, controlnet_encoder_hidden_states,controlnet_encoder_hidden_states], dim=0
)
else:
controlnet_encoder_hidden_states = None
if self.reference_unet:
reference_control_writer = ReferenceAttentionControl(
self.reference_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="write",
batch_size=batch_size,
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
self.denoising_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="read",
batch_size=batch_size,
fusion_blocks="full",
)
else:
reference_control_writer = None
reference_control_reader = None
if show_progress_bar:
iterable_bar = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable_bar = single_rgb_loader
assert len(iterable_bar) == 1
for batch in iterable_bar:
(ref1, raw2, edit2) = batch # here the image is still around 0-1
if is_lineart:
raw2 = raw2_real
img_pred, to_save_dict = self.single_infer(
is_lineart=is_lineart,
ref1=ref1,
raw2=raw2,
edit2=edit2,
num_inference_steps=denosing_steps,
show_pbar=show_progress_bar,
guidance_scale_ref=guidance_scale_ref,
guidance_scale_point=guidance_scale_point,
refnet_encoder_hidden_states=refnet_encoder_hidden_states,
controlnet_encoder_hidden_states=controlnet_encoder_hidden_states,
reference_control_writer=reference_control_writer,
reference_control_reader=reference_control_reader,
preprocessor=preprocessor,
generator=generator,
point_ref=point_ref,
point_main=point_main
)
for k, v in to_save_dict.items():
if k =='edge2_black':
to_save_dict[k] = Image.fromarray(
((to_save_dict['edge2_black'][:,0].squeeze().detach().cpu().numpy() + 1.) / 2 * 255).astype(np.uint8)
)
else:
try:
to_save_dict[k] = Image.fromarray(
chw2hwc(((v.squeeze().detach().cpu().numpy() + 1.) / 2 * 255).astype(np.uint8))
)
except:
import ipdb;ipdb.set_trace()
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Post processing -----------------
# Convert to numpy
img_pred = img_pred.squeeze().cpu().numpy().astype(np.float32)
img_pred_np = (((img_pred + 1.) / 2.) * 255).astype(np.uint8)
img_pred_np = chw2hwc(img_pred_np)
img_pred_pil = Image.fromarray(img_pred_np)
# Resize back to original resolution
if match_input_res:
img_pred_pil = img_pred_pil.resize(input_size)
img_pred_np = np.asarray(img_pred_pil)
return MangaNinjiaPipelineOutput(
img_np=img_pred_np,
img_pil=img_pred_pil,
to_save_dict=to_save_dict
)
def __encode_empty_text(self):
"""
Encode text embedding for empty prompt
"""
prompt = ""
text_inputs = self.tokenizer(
prompt,
padding="do_not_pad",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
# print(text_input_ids.shape)
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
# get the original timestep using init_timestep
if denoising_start is None:
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
else:
t_start = 0
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
# Strength is irrelevant if we directly request a timestep to start at;
# that is, strength is determined by the denoising_start instead.
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
)
)
timesteps = list(filter(lambda ts: ts < discrete_timestep_cutoff, timesteps))
return torch.tensor(timesteps), len(timesteps)
return timesteps, num_inference_steps - t_start
@torch.no_grad()
def single_infer(
self,
is_lineart: bool,
ref1: torch.Tensor,
raw2: torch.Tensor,
edit2: torch.Tensor,
num_inference_steps: int,
show_pbar: bool,
guidance_scale_ref: float,
guidance_scale_point: float,
refnet_encoder_hidden_states: torch.Tensor,
controlnet_encoder_hidden_states: torch.Tensor,
reference_control_writer: ReferenceAttentionControl,
reference_control_reader: ReferenceAttentionControl,
preprocessor,
generator,
point_ref,
point_main
):
do_classifier_free_guidance = guidance_scale_ref > 1.0
device = ref1.device
to_save_dict = {
'ref1': ref1,
}
# Set timesteps: inherit from the diffuison pipeline
self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
timesteps = self.scheduler.timesteps # [T]
# encode image
ref1_latents = self.encode_RGB(ref1, generator=generator) # 1/8 Resolution with a channel nums of 4.
edge2_src = raw2
timesteps_add,_=self.get_timesteps(num_inference_steps, 1.0, device, denoising_start=None)
if is_lineart is not True:
edge2 = preprocessor(edge2_src)
else:
gray_image_np = np.array(edge2_src)
gray_image_np = gray_image_np / 255.0
edge2 = torch.from_numpy(gray_image_np.astype(np.float32)).unsqueeze(0).unsqueeze(0).cuda()
edge2[edge2<=0.24]=0
edge2_black = edge2.repeat(1, 3, 1, 1) * 2 - 1.
to_save_dict['edge2_black']=edge2_black
edge2 = edge2.repeat(1, 3, 1, 1) * 2 - 1.
to_save_dict['edge2'] = (1-((edge2+1.)/2))*2-1
noisy_edit2_latents = torch.randn(
ref1_latents.shape, device=device, dtype=self.dtype
) # [B, 4, H/8, W/8]
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
refnet_input = ref1_latents
controlnet_inputs = (noisy_edit2_latents, edge2)
unet_input = torch.cat([noisy_edit2_latents], dim=1)
if i == 0:
if self.reference_unet:
self.reference_unet(
refnet_input.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
),
torch.zeros_like(t),
encoder_hidden_states=refnet_encoder_hidden_states,
return_dict=False,
)
reference_control_reader.update(reference_control_writer,point_embedding_ref=point_ref,point_embedding_main=point_main)#size不对
if self.controlnet:
noisy_latents, controlnet_cond = controlnet_inputs
down_block_res_samples, mid_block_res_sample = self.controlnet(
noisy_latents.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
),
t,
encoder_hidden_states=controlnet_encoder_hidden_states,
controlnet_cond=controlnet_cond.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
),
return_dict=False,
)
else:
down_block_res_samples, mid_block_res_sample = None, None
# predict the noise residual
noise_pred = self.denoising_unet(
unet_input.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
).to(dtype=self.denoising_unet.dtype),
t,
encoder_hidden_states=refnet_encoder_hidden_states,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample # [B, 4, h, w]
noise_pred_uncond, noise_pred_ref, noise_pred_point = noise_pred.chunk(3)
noise_pred_1 = noise_pred_uncond + guidance_scale_ref * (
noise_pred_ref - noise_pred_uncond
)
noise_pred_2 = noise_pred_ref + guidance_scale_point * (
noise_pred_point - noise_pred_ref
)
noise_pred=(noise_pred_1+noise_pred_2)/2
noisy_edit2_latents = self.scheduler.step(noise_pred, t, noisy_edit2_latents).prev_sample
reference_control_reader.clear()
reference_control_writer.clear()
torch.cuda.empty_cache()
# clip prediction
edit2 = self.decode_RGB(noisy_edit2_latents)
edit2 = torch.clip(edit2, -1.0, 1.0)
return edit2, to_save_dict
def encode_RGB(self, rgb_in: torch.Tensor, generator) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# generator = None
rgb_latent = self.vae.encode(rgb_in).latent_dist.sample(generator)
rgb_latent = rgb_latent * self.rgb_latent_scale_factor
return rgb_latent
def decode_RGB(self, rgb_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
rgb_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
rgb_latent = rgb_latent / self.rgb_latent_scale_factor
rgb_out = self.vae.decode(rgb_latent, return_dict=False)[0]
return rgb_out
|