Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,722 Bytes
459fa69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple
from diffusers.models.modeling_utils import ModelMixin
class PointNet(ModelMixin):
def __init__(
self,
conditioning_channels: int = 1,
out_channels: Tuple[int] = (320, 640, 1280, 1280),
downsamples: Tuple[int] = (6, 2, 2, 2)
):
super(PointNet, self).__init__()
self.blocks = nn.ModuleList()
current_channels = conditioning_channels
# 构造卷积块
for out_channel, downsample in zip(out_channels, downsamples):
layers = []
for _ in range(downsample // 2):
layers.append(nn.Conv2d(in_channels=current_channels, out_channels=out_channel, kernel_size=3, stride=2, padding=1))
layers.append(nn.SiLU())
current_channels = out_channel
self.blocks.append(nn.Sequential(*layers))
def forward(self, x):
embeddings = []
embedding = x
for block in self.blocks:
embedding = block(embedding)
B, C, H, W = embedding.shape
embeddings.append(embedding.view(B, C, H * W).transpose(1, 2))
# embeddings.append(embedding)
return embeddings
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Using device: {device}')
model = PointNet().to(device)
dummy_input = torch.randn(1, 1, 288, 512).to(device) # Batch size = 1, Channels = 1, Height = 288, Width = 512
embeddings = model(dummy_input)
for i, embedding in enumerate(embeddings):
print(f"Output at layer {i + 1}:", embedding.shape) |