File size: 6,501 Bytes
d516aa4
 
 
 
 
 
 
7ba1d45
 
 
 
da0d3cc
d516aa4
da0d3cc
d516aa4
da0d3cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d516aa4
7ba1d45
 
da0d3cc
 
 
 
 
 
 
7ba1d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98659d3
 
7ba1d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f11df
7ba1d45
 
 
 
 
da0d3cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba1d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import os
import shutil
import subprocess
import gradio as gr 
import json
import tempfile
from huggingface_hub import snapshot_download

# Download All Required Models using `snapshot_download`

def download_and_extract(repo_id, target_dir, cache_dir=None):
    """
    Download from HF Hub to cache, then copy to target_dir if not already present.
    """
    print(f"Downloading (with cache) {repo_id}...")

    # Use snapshot_download with optional custom cache
    snapshot_path = snapshot_download(
        repo_id=repo_id,
        cache_dir=cache_dir,  # You can pass a shared cache path here
        local_dir=None,       # Ensure it's using the actual cache
        local_dir_use_symlinks=False
    )

    # Copy from cache to target directory
    if not os.path.exists(target_dir) or not os.listdir(target_dir):
        os.makedirs(target_dir, exist_ok=True)
        shutil.copytree(snapshot_path, target_dir, dirs_exist_ok=True)
        print(f"Copied {repo_id} to {target_dir}")
    else:
        print(f"{target_dir} already populated. Skipping copy.")

    return target_dir


# Optional: share one cache location across all models
custom_cache = "./hf_cache"

wan_model_path = download_and_extract("Wan-AI/Wan2.1-I2V-14B-480P", "./weights/Wan2.1-I2V-14B-480P", cache_dir=custom_cache)
wav2vec_path   = download_and_extract("TencentGameMate/chinese-wav2vec2-base", "./weights/chinese-wav2vec2-base", cache_dir=custom_cache)
multitalk_path = download_and_extract("MeiGen-AI/MeiGen-MultiTalk", "./weights/MeiGen-MultiTalk", cache_dir=custom_cache)



# Define paths
base_model_dir = "./weights/Wan2.1-I2V-14B-480P"
multitalk_dir = "./weights/MeiGen-MultiTalk"

# File to rename
original_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json")
backup_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json_old")

# Rename the original index file
if os.path.exists(original_index):
    os.rename(original_index, backup_index)
    print("Renamed original index file to .json_old")

# Copy updated index file from MultiTalk
shutil.copy2(
    os.path.join(multitalk_dir, "diffusion_pytorch_model.safetensors.index.json"),
    base_model_dir
)

# Copy MultiTalk model weights
shutil.copy2(
    os.path.join(multitalk_dir, "multitalk.safetensors"),
    base_model_dir
)

print("Copied MultiTalk files into base model directory.")



# Check if CUDA-compatible GPU is available
if torch.cuda.is_available():
    # Get current GPU name
    gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
    print(f"Current GPU: {gpu_name}")

    # Enforce GPU requirement
    if "A100" not in gpu_name and "L4" not in gpu_name:
        raise RuntimeError(f"This notebook requires an A100 or L4 GPU. Found: {gpu_name}")
    elif "L4" in gpu_name:
        print("Warning: L4 is supported, but A100 is recommended for faster inference.")
else:
    raise RuntimeError("No CUDA-compatible GPU found. An A100 or L4 GPU is required.")


GPU_TO_VRAM_PARAMS = {
    "NVIDIA A100": 11000000000,
    "NVIDIA A100-SXM4-40GB": 11000000000,
    "NVIDIA A100-SXM4-80GB": 22000000000,
    "NVIDIA L4": 5000000000,
    "NVIDIA L40S": 5000000000
}
USED_VRAM_PARAMS = GPU_TO_VRAM_PARAMS[gpu_name]
print("Using", USED_VRAM_PARAMS, "for num_persistent_param_in_dit")



def create_temp_input_json(prompt: str, cond_image_path: str, cond_audio_path: str) -> str:
    """
    Create a temporary JSON file with the user-provided prompt, image, and audio paths.
    Returns the path to the temporary JSON file.
    """
    # Structure based on your original JSON format
    data = {
        "prompt": prompt,
        "cond_image": cond_image_path,
        "cond_audio": {
            "person1": cond_audio_path
        }
    }

    # Create a temp file
    temp_json = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w', encoding='utf-8')
    json.dump(data, temp_json, indent=4)
    temp_json_path = temp_json.name
    temp_json.close()

    print(f"Temporary input JSON saved to: {temp_json_path}")
    return temp_json_path


def infer(prompt, cond_image_path, cond_audio_path):   

    # Example usage (from user input)
    prompt = "A woman sings passionately in a dimly lit studio."
    cond_image_path = "examples/single/single1.png"   # Assume uploaded via Gradio
    cond_audio_path = "examples/single/1.wav"   # Assume uploaded via Gradio

    input_json_path = create_temp_input_json(prompt, cond_image_path, cond_audio_path)

    cmd = [
        "python3", "generate_multitalk.py",
        "--ckpt_dir", "weights/Wan2.1-I2V-14B-480P",
        "--wav2vec_dir", "weights/chinese-wav2vec2-base",
        "--input_json", "./examples/single_example_1.json",
        "--sample_steps", "20",
        "--num_persistent_param_in_dit", str(USED_VRAM_PARAMS),
        "--mode", "streaming",
        "--use_teacache",
        "--save_file", "multi_long_mediumvram_exp"
    ]

    # Optional: log file
    log_file_path = "inference.log"

    # Run and stream logs in real-time
    with open(log_file_path, "w") as log_file:
        process = subprocess.Popen(
            cmd,
            stdout=subprocess.PIPE,
            stderr=subprocess.STDOUT,
            text=True,
            bufsize=1  # Line-buffered
        )

        for line in process.stdout:
            print(line, end="")     # Print to console in real-time
            log_file.write(line)    # Save to log file

        process.wait()

    if process.returncode != 0:
        raise RuntimeError("Inference failed. Check inference.log for details.")

    return "multi_long_mediumvra_exp.mp4"


with gr.Blocks(title="MultiTalk Inference") as demo:
    gr.Markdown("## 🎤 MultiTalk Inference Demo")

    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Text Prompt",
                placeholder="Describe the scene...",
                lines=4
            )

            image_input = gr.Image(
                type="filepath",
                label="Conditioning Image"
            )

            audio_input = gr.Audio(
                type="filepath",
                label="Conditioning Audio (.wav)"
            )

            submit_btn = gr.Button("Generate")

        with gr.Column():
            output_video = gr.Video(label="Generated Video")

    submit_btn.click(
        fn=infer,
        inputs=[prompt_input, image_input, audio_input],
        outputs=output_video
    )

demo.launch()