File size: 5,107 Bytes
7ba1d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f11df
7ba1d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from huggingface_hub import snapshot_download

# Download All Required Models using `snapshot_download`

# Download Wan2.1-I2V-14B-480P model
wan_model_path = snapshot_download(
    repo_id="Wan-AI/Wan2.1-I2V-14B-480P",
    local_dir="./weights/Wan2.1-I2V-14B-480P",
    #local_dir_use_symlinks=False
)

# Download Chinese wav2vec2 model
wav2vec_path = snapshot_download(
    repo_id="TencentGameMate/chinese-wav2vec2-base",
    local_dir="./weights/chinese-wav2vec2-base",
    #local_dir_use_symlinks=False
)

# Download MeiGen MultiTalk weights
multitalk_path = snapshot_download(
    repo_id="MeiGen-AI/MeiGen-MultiTalk",
    local_dir="./weights/MeiGen-MultiTalk",
    #local_dir_use_symlinks=False
)


import os
import shutil

# Define paths
base_model_dir = "./weights/Wan2.1-I2V-14B-480P"
multitalk_dir = "./weights/MeiGen-MultiTalk"

# File to rename
original_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json")
backup_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json_old")

# Rename the original index file
if os.path.exists(original_index):
    os.rename(original_index, backup_index)
    print("Renamed original index file to .json_old")

# Copy updated index file from MultiTalk
shutil.copy2(
    os.path.join(multitalk_dir, "diffusion_pytorch_model.safetensors.index.json"),
    base_model_dir
)

# Copy MultiTalk model weights
shutil.copy2(
    os.path.join(multitalk_dir, "multitalk.safetensors"),
    base_model_dir
)

print("Copied MultiTalk files into base model directory.")


import torch

# Check if CUDA-compatible GPU is available
if torch.cuda.is_available():
    # Get current GPU name
    gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
    print(f"Current GPU: {gpu_name}")

    # Enforce GPU requirement
    if "A100" not in gpu_name and "L4" not in gpu_name:
        raise RuntimeError(f"This notebook requires an A100 or L4 GPU. Found: {gpu_name}")
    elif "L4" in gpu_name:
        print("Warning: L4 is supported, but A100 is recommended for faster inference.")
else:
    raise RuntimeError("No CUDA-compatible GPU found. An A100 or L4 GPU is required.")


GPU_TO_VRAM_PARAMS = {
    "NVIDIA A100": 11000000000,
    "NVIDIA A100-SXM4-40GB": 11000000000,
    "NVIDIA A100-SXM4-80GB": 22000000000,
    "NVIDIA L4": 5000000000
}
USED_VRAM_PARAMS = GPU_TO_VRAM_PARAMS[gpu_name]
print("Using", USED_VRAM_PARAMS, "for num_persistent_param_in_dit")

import subprocess

import json
import tempfile
#import os

def create_temp_input_json(prompt: str, cond_image_path: str, cond_audio_path: str) -> str:
    """
    Create a temporary JSON file with the user-provided prompt, image, and audio paths.
    Returns the path to the temporary JSON file.
    """
    # Structure based on your original JSON format
    data = {
        "prompt": prompt,
        "cond_image": cond_image_path,
        "cond_audio": {
            "person1": cond_audio_path
        }
    }

    # Create a temp file
    temp_json = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w', encoding='utf-8')
    json.dump(data, temp_json, indent=4)
    temp_json_path = temp_json.name
    temp_json.close()

    print(f"Temporary input JSON saved to: {temp_json_path}")
    return temp_json_path


def infer(prompt, cond_image_path, cond_audio_path):   

    # Example usage (from user input)
    prompt = "A woman sings passionately in a dimly lit studio."
    cond_image_path = "examples/single/single1.png"   # Assume uploaded via Gradio
    cond_audio_path = "examples/single/1.wav"   # Assume uploaded via Gradio

    input_json_path = create_temp_input_json(prompt, cond_image_path, cond_audio_path)

    cmd = [
        "python3", "generate_multitalk.py",
        "--ckpt_dir", "weights/Wan2.1-I2V-14B-480P",
        "--wav2vec_dir", "weights/chinese-wav2vec2-base",
        "--input_json", "./examples/single_example_1.json",
        "--sample_steps", "20",
        "--num_persistent_param_in_dit", str(USED_VRAM_PARAMS),
        "--mode", "streaming",
        "--use_teacache",
        "--save_file", "multi_long_mediumvram_exp"
    ]

    subprocess.run(cmd, check=True)

    return "multi_long_mediumvra_exp.mp4"

import gradio as gr

with gr.Blocks(title="MultiTalk Inference") as demo:
    gr.Markdown("## 🎤 MultiTalk Inference Demo")

    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Text Prompt",
                placeholder="Describe the scene...",
                lines=4
            )

            image_input = gr.Image(
                type="filepath",
                label="Conditioning Image"
            )

            audio_input = gr.Audio(
                type="filepath",
                label="Conditioning Audio (.wav)"
            )

            submit_btn = gr.Button("Generate")

        with gr.Column():
            output_video = gr.Video(label="Generated Video")

    submit_btn.click(
        fn=infer,
        inputs=[prompt_input, image_input, audio_input],
        outputs=output_video
    )

demo.launch()