Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,761 Bytes
2d438a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import copy
import torch
from src.utils import init_weights_on_device
def cast_to(weight, dtype, device):
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
class AutoWrappedModule(torch.nn.Module):
def __init__(
self,
module: torch.nn.Module,
offload_dtype,
offload_device,
onload_dtype,
onload_device,
computation_dtype,
computation_device,
):
super().__init__()
self.module = module.to(dtype=offload_dtype, device=offload_device)
self.offload_dtype = offload_dtype
self.offload_device = offload_device
self.onload_dtype = onload_dtype
self.onload_device = onload_device
self.computation_dtype = computation_dtype
self.computation_device = computation_device
self.state = 0
def offload(self):
if self.state == 1 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.module.to(dtype=self.offload_dtype, device=self.offload_device)
self.state = 0
def onload(self):
if self.state == 0 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.module.to(dtype=self.onload_dtype, device=self.onload_device)
self.state = 1
def forward(self, *args, **kwargs):
if (
self.onload_dtype == self.computation_dtype
and self.onload_device == self.computation_device
):
module = self.module
else:
module = copy.deepcopy(self.module).to(
dtype=self.computation_dtype, device=self.computation_device
)
return module(*args, **kwargs)
class AutoWrappedLinear(torch.nn.Linear):
def __init__(
self,
module: torch.nn.Linear,
offload_dtype,
offload_device,
onload_dtype,
onload_device,
computation_dtype,
computation_device,
):
with init_weights_on_device(device=torch.device("meta")):
super().__init__(
in_features=module.in_features,
out_features=module.out_features,
bias=module.bias is not None,
dtype=offload_dtype,
device=offload_device,
)
self.weight = module.weight
self.bias = module.bias
self.offload_dtype = offload_dtype
self.offload_device = offload_device
self.onload_dtype = onload_dtype
self.onload_device = onload_device
self.computation_dtype = computation_dtype
self.computation_device = computation_device
self.state = 0
def offload(self):
if self.state == 1 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.to(dtype=self.offload_dtype, device=self.offload_device)
self.state = 0
def onload(self):
if self.state == 0 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.to(dtype=self.onload_dtype, device=self.onload_device)
self.state = 1
def forward(self, x, *args, **kwargs):
if (
self.onload_dtype == self.computation_dtype
and self.onload_device == self.computation_device
):
weight, bias = self.weight, self.bias
else:
weight = cast_to(
self.weight, self.computation_dtype, self.computation_device
)
bias = (
None
if self.bias is None
else cast_to(self.bias, self.computation_dtype, self.computation_device)
)
return torch.nn.functional.linear(x, weight, bias)
def enable_vram_management_recursively(
model: torch.nn.Module,
module_map: dict,
module_config: dict,
max_num_param=None,
overflow_module_config: dict = None,
total_num_param=0,
):
for name, module in model.named_children():
for source_module, target_module in module_map.items():
if isinstance(module, source_module):
num_param = sum(p.numel() for p in module.parameters())
# print(str(module) + ':' + str(num_param))
if (
max_num_param is not None
and total_num_param + num_param > max_num_param
):
# print(str(module) + '-->\t\t num:' + str(num_param) + "\t total:" + str(total_num_param))
module_config_ = overflow_module_config
else:
module_config_ = module_config
module_ = target_module(module, **module_config_)
setattr(model, name, module_)
total_num_param += num_param
break
else:
total_num_param = enable_vram_management_recursively(
module,
module_map,
module_config,
max_num_param,
overflow_module_config,
total_num_param,
)
return total_num_param
def enable_vram_management(
model: torch.nn.Module,
module_map: dict,
module_config: dict,
max_num_param=None,
overflow_module_config: dict = None,
):
enable_vram_management_recursively(
model,
module_map,
module_config,
max_num_param,
overflow_module_config,
total_num_param=0,
)
model.vram_management_enabled = True
|