Meigen-MultiTalk / wan /distributed /xdit_context_parallel.py
fffiloni's picture
Migrated from GitHub
2d438a0 verified
raw
history blame
20.4 kB
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
import torch.cuda.amp as amp
from xfuser.core.distributed import (
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group,
)
from einops import rearrange
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
import xformers.ops
from ..modules.model import sinusoidal_embedding_1d
from ..utils.multitalk_utils import get_attn_map_with_target, split_token_counts_and_frame_ids, normalize_and_scale
from ..modules.attention import SingleStreamAttention, SingleStreamMutiAttention
def pad_freqs(original_tensor, target_len):
seq_len, s1, s2 = original_tensor.shape
pad_size = target_len - seq_len
padding_tensor = torch.ones(
pad_size,
s1,
s2,
dtype=original_tensor.dtype,
device=original_tensor.device)
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
return padded_tensor
@amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
"""
x: [B, L, N, C].
grid_sizes: [B, 3].
freqs: [M, C // 2].
"""
s, n, c = x.size(1), x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) # [[N, head_dim/2], [N, head_dim/2], [N, head_dim/2]] # T H W 极坐标
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
s, n, -1, 2)) # [L, N, C/2] # 极坐标
freqs_i = torch.cat([
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
],
dim=-1).reshape(seq_len, 1, -1) # seq_lens, 1, 3 * dim / 2 (T H W)
# apply rotary embedding
sp_size = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
freqs_i = pad_freqs(freqs_i, s * sp_size)
s_per_rank = s
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
s_per_rank), :, :]
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
x_i = torch.cat([x_i, x[i, s:]])
# append to collection
output.append(x_i)
return torch.stack(output).float()
def usp_dit_forward_vace(self, x, vace_context, seq_len, kwargs):
# embeddings
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
c = [u.flatten(2).transpose(1, 2) for u in c]
c = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
for u in c
])
# arguments
new_kwargs = dict(x=x)
new_kwargs.update(kwargs)
# Context Parallel
c = torch.chunk(
c, get_sequence_parallel_world_size(),
dim=1)[get_sequence_parallel_rank()]
hints = []
for block in self.vace_blocks:
c, c_skip = block(c, **new_kwargs)
hints.append(c_skip)
return hints
def usp_dit_forward(
self,
x,
t,
context,
seq_len,
vace_context=None,
vace_context_scale=1.0,
clip_fea=None,
y=None,
):
"""
x: A list of videos each with shape [C, T, H, W].
t: [B].
context: A list of text embeddings each with shape [L, C].
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
if self.model_type != 'vace' and y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
for u in x
])
# time embeddings
with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
if self.model_type != 'vace' and clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens)
# Context Parallel
x = torch.chunk(
x, get_sequence_parallel_world_size(),
dim=1)[get_sequence_parallel_rank()]
for block in self.blocks:
x = block(x, **kwargs)
# head
x = self.head(x, e)
# Context Parallel
x = get_sp_group().all_gather(x, dim=1)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return [u.float() for u in x]
def usp_attn_forward(self,
x,
seq_lens,
grid_sizes,
freqs,
dtype=torch.bfloat16):
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
half_dtypes = (torch.float16, torch.bfloat16)
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
return q, k, v
q, k, v = qkv_fn(x)
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
# TODO: We should use unpaded q,k,v for attention.
# k_lens = seq_lens // get_sequence_parallel_world_size()
# if k_lens is not None:
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
x = xFuserLongContextAttention()(
None,
query=half(q),
key=half(k),
value=half(v),
window_size=self.window_size)
# TODO: padding after attention.
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
# output
x = x.flatten(2)
x = self.o(x)
return x
def usp_dit_forward_multitalk(
self,
x,
t,
context,
seq_len,
clip_fea=None,
y=None,
audio=None,
ref_target_masks=None,
):
"""
x: A list of videos each with shape [C, T, H, W].
t: [B].
context: A list of text embeddings each with shape [L, C].
"""
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
_, T, H, W = x[0].shape
N_t = T // self.patch_size[0]
N_h = H // self.patch_size[1]
N_w = W // self.patch_size[2]
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
x[0] = x[0].to(context[0].dtype)
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
for u in x
])
# time embeddings
with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
if clip_fea is not None:
context_clip = self.img_emb(clip_fea)
context = torch.concat([context_clip, context], dim=1)
# get audio token
audio_cond = audio.to(device=x.device, dtype=x.dtype)
first_frame_audio_emb_s = audio_cond[:, :1, ...]
latter_frame_audio_emb = audio_cond[:, 1:, ...]
latter_frame_audio_emb = rearrange(latter_frame_audio_emb, "b (n_t n) w s c -> b n_t n w s c", n=self.vae_scale)
middle_index = self.audio_window // 2
latter_first_frame_audio_emb = latter_frame_audio_emb[:, :, :1, :middle_index+1, ...]
latter_first_frame_audio_emb = rearrange(latter_first_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_last_frame_audio_emb = latter_frame_audio_emb[:, :, -1:, middle_index:, ...]
latter_last_frame_audio_emb = rearrange(latter_last_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_middle_frame_audio_emb = latter_frame_audio_emb[:, :, 1:-1, middle_index:middle_index+1, ...]
latter_middle_frame_audio_emb = rearrange(latter_middle_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_frame_audio_emb_s = torch.concat([latter_first_frame_audio_emb, latter_middle_frame_audio_emb, latter_last_frame_audio_emb], dim=2)
audio_embedding = self.audio_proj(first_frame_audio_emb_s, latter_frame_audio_emb_s)
human_num = len(audio_embedding)
audio_embedding = torch.concat(audio_embedding.split(1), dim=2).to(x.dtype)
# convert ref_target_masks to token_ref_target_masks
if ref_target_masks is not None:
ref_target_masks = ref_target_masks.unsqueeze(0).to(torch.float32)
token_ref_target_masks = nn.functional.interpolate(ref_target_masks, size=(N_h, N_w), mode='nearest')
token_ref_target_masks = token_ref_target_masks.squeeze(0)
token_ref_target_masks = (token_ref_target_masks > 0)
token_ref_target_masks = token_ref_target_masks.view(token_ref_target_masks.shape[0], -1)
token_ref_target_masks = token_ref_target_masks.to(x.dtype)
if self.enable_teacache:
modulated_inp = e0 if self.use_ret_steps else e
if self.cnt%3==0: # cond
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
should_calc_cond = True
self.accumulated_rel_l1_distance_cond = 0
else:
rescale_func = np.poly1d(self.coefficients)
self.accumulated_rel_l1_distance_cond += rescale_func(((modulated_inp-self.previous_e0_cond).abs().mean() / self.previous_e0_cond.abs().mean()).cpu().item())
# print("accumulated_rel_l1_distance_even", self.accumulated_rel_l1_distance_even)
if self.accumulated_rel_l1_distance_cond < self.teacache_thresh:
should_calc_cond = False
else:
should_calc_cond = True
self.accumulated_rel_l1_distance_cond = 0
self.previous_e0_cond = modulated_inp.clone()
elif self.cnt%3==1: # drop_text
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
should_calc_drop_text = True
self.accumulated_rel_l1_distance_drop_text = 0
else:
rescale_func = np.poly1d(self.coefficients)
self.accumulated_rel_l1_distance_drop_text += rescale_func(((modulated_inp-self.previous_e0_drop_text).abs().mean() / self.previous_e0_drop_text.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_drop_text < self.teacache_thresh:
should_calc_drop_text = False
else:
should_calc_drop_text = True
self.accumulated_rel_l1_distance_drop_text = 0
self.previous_e0_drop_text = modulated_inp.clone()
else: # uncond
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
should_calc_uncond = True
self.accumulated_rel_l1_distance_uncond = 0
else:
rescale_func = np.poly1d(self.coefficients)
self.accumulated_rel_l1_distance_uncond += rescale_func(((modulated_inp-self.previous_e0_uncond).abs().mean() / self.previous_e0_uncond.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_uncond < self.teacache_thresh:
should_calc_uncond = False
else:
should_calc_uncond = True
self.accumulated_rel_l1_distance_uncond = 0
self.previous_e0_uncond = modulated_inp.clone()
# Context Parallel
x = torch.chunk(
x, get_sequence_parallel_world_size(),
dim=1)[get_sequence_parallel_rank()]
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
audio_embedding=audio_embedding,
ref_target_masks=token_ref_target_masks,
human_num=human_num,
)
if self.enable_teacache:
if self.cnt%3==0:
if not should_calc_cond:
x += self.previous_residual_cond
else:
ori_x = x.clone()
for block in self.blocks:
x = block(x, **kwargs)
self.previous_residual_cond = x - ori_x
elif self.cnt%3==1:
if not should_calc_drop_text:
x += self.previous_residual_drop_text
else:
ori_x = x.clone()
for block in self.blocks:
x = block(x, **kwargs)
self.previous_residual_drop_text = x - ori_x
else:
if not should_calc_uncond:
x += self.previous_residual_uncond
else:
ori_x = x.clone()
for block in self.blocks:
x = block(x, **kwargs)
self.previous_residual_uncond = x - ori_x
else:
for block in self.blocks:
x = block(x, **kwargs)
# head
x = self.head(x, e)
# Context Parallel
x = get_sp_group().all_gather(x, dim=1)
# unpatchify
x = self.unpatchify(x, grid_sizes)
if self.enable_teacache:
self.cnt += 1
if self.cnt >= self.num_steps:
self.cnt = 0
return torch.stack(x).float()
def usp_attn_forward_multitalk(self,
x,
seq_lens,
grid_sizes,
freqs,
dtype=torch.bfloat16,
ref_target_masks=None):
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
half_dtypes = (torch.float16, torch.bfloat16)
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
return q, k, v
q, k, v = qkv_fn(x)
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
x = xFuserLongContextAttention()(
None,
query=half(q),
key=half(k),
value=half(v),
window_size=self.window_size)
# output
x = x.flatten(2)
x = self.o(x)
with torch.no_grad():
x_ref_attn_map = get_attn_map_with_target(q.type_as(x), k.type_as(x), grid_sizes[0],
ref_target_masks=ref_target_masks, enable_sp=True)
return x, x_ref_attn_map
def usp_crossattn_multi_forward_multitalk(self,
x: torch.Tensor,
encoder_hidden_states: torch.Tensor, # 1, 21, 64, C
shape=None,
x_ref_attn_map=None,
human_num=None) -> torch.Tensor:
N_t, N_h, N_w = shape
sp_size = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
audio_tokens_per_frame = 32
visual_seqlen, frame_ids = split_token_counts_and_frame_ids(N_t, N_h * N_w, sp_size, sp_rank)
encoder_hidden_states = encoder_hidden_states[:, min(frame_ids):max(frame_ids)+1, ...]
encoder_hidden_states = rearrange(encoder_hidden_states, "B T N C -> B (T N) C")
N_a = len(frame_ids)
kv_seq = [audio_tokens_per_frame * human_num] * N_a
if human_num == 1:
return super(SingleStreamMutiAttention, self).forward(x, encoder_hidden_states, shape, enable_sp=True, kv_seq=kv_seq)
# get q for hidden_state
B, N, C = x.shape
q = self.q_linear(x)
q_shape = (B, N, self.num_heads, self.head_dim)
q = q.view(q_shape).permute((0, 2, 1, 3))
if self.qk_norm:
q = self.q_norm(q)
max_values = x_ref_attn_map.max(1).values[:, None, None]
min_values = x_ref_attn_map.min(1).values[:, None, None]
max_min_values = torch.cat([max_values, min_values], dim=2)
max_min_values = get_sp_group().all_gather(max_min_values, dim=1)
human1_max_value, human1_min_value = max_min_values[0, :, 0].max(), max_min_values[0, :, 1].min()
human2_max_value, human2_min_value = max_min_values[1, :, 0].max(), max_min_values[1, :, 1].min()
human1 = normalize_and_scale(x_ref_attn_map[0], (human1_min_value, human1_max_value), (self.rope_h1[0], self.rope_h1[1]))
human2 = normalize_and_scale(x_ref_attn_map[1], (human2_min_value, human2_max_value), (self.rope_h2[0], self.rope_h2[1]))
back = torch.full((x_ref_attn_map.size(1),), self.rope_bak, dtype=human1.dtype).to(human1.device)
max_indices = x_ref_attn_map.argmax(dim=0)
normalized_map = torch.stack([human1, human2, back], dim=1)
normalized_pos = normalized_map[range(x_ref_attn_map.size(1)), max_indices] # N
q = self.rope_1d(q, normalized_pos)
encoder_kv = self.kv_linear(encoder_hidden_states)
encoder_kv_shape = (B, encoder_hidden_states.size(1), 2, self.num_heads, self.head_dim)
encoder_kv = encoder_kv.view(encoder_kv_shape).permute((2, 0, 3, 1, 4))
encoder_k, encoder_v = encoder_kv.unbind(0) # B H N C
if self.qk_norm:
encoder_k = self.add_k_norm(encoder_k)
# position embedding for condition audio embeddings
per_frame = torch.zeros(audio_tokens_per_frame * human_num, dtype=encoder_k.dtype).to(encoder_k.device)
per_frame[:audio_tokens_per_frame] = (self.rope_h1[0] + self.rope_h1[1]) / 2
per_frame[audio_tokens_per_frame:] = (self.rope_h2[0] + self.rope_h2[1]) / 2
encoder_pos = torch.concat([per_frame]*N_a, dim=0)
encoder_k = self.rope_1d(encoder_k, encoder_pos)
# get attn
q = rearrange(q, "B H M K -> B M H K")
encoder_k = rearrange(encoder_k, "B H M K -> B M H K")
encoder_v = rearrange(encoder_v, "B H M K -> B M H K")
attn_bias = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(visual_seqlen, kv_seq)
x = xformers.ops.memory_efficient_attention(q, encoder_k, encoder_v, attn_bias=attn_bias, op=None,)
x = rearrange(x, "B M H K -> B H M K")
# linear transform
x_output_shape = (B, N, C)
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x