Spaces:
Paused
Paused
added lyrics optional step
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces")
|
|
7 |
from gradio_client import Client
|
8 |
|
9 |
client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token)
|
|
|
|
|
10 |
|
11 |
from compel import Compel, ReturnedEmbeddingsType
|
12 |
from diffusers import DiffusionPipeline
|
@@ -60,42 +62,58 @@ def solo_xd(prompt):
|
|
60 |
images = pipe(prompt=prompt).images[0]
|
61 |
return images
|
62 |
|
63 |
-
def infer(audio_file):
|
|
|
64 |
|
65 |
truncated_audio = cut_audio(audio_file, "trunc_audio.mp3")
|
66 |
-
|
|
|
67 |
cap_result = lpmc_client(
|
68 |
truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component
|
69 |
api_name="predict"
|
70 |
)
|
71 |
-
print(cap_result)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#print(f"SUMMARY: {summary_result}")
|
89 |
-
|
90 |
-
llama_q = f"""
|
91 |
-
I'll give you a music description, from i want you to provide an illustrative image description that would fit well with the music.
|
92 |
-
Do not processs each segment or song, but provide a summary for the whole instead.
|
93 |
-
Answer with only one image description. Never do lists. Maximum 77 tokens.
|
94 |
-
Here's the music description :
|
95 |
-
{cap_result}
|
96 |
|
97 |
-
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
result = client.predict(
|
100 |
llama_q, # str in 'Message' Textbox component
|
101 |
api_name="/predict"
|
@@ -105,8 +123,10 @@ def infer(audio_file):
|
|
105 |
|
106 |
print(f"Llama2 result: {result}")
|
107 |
|
108 |
-
#
|
109 |
-
|
|
|
|
|
110 |
prompt = result
|
111 |
conditioning, pooled = compel(prompt)
|
112 |
images = pipe(prompt_embeds=conditioning, pooled_prompt_embeds=pooled).images[0]
|
@@ -142,21 +162,22 @@ with gr.Blocks(css=css) as demo:
|
|
142 |
</p>
|
143 |
</div>""")
|
144 |
audio_input = gr.Audio(label="Music input", type="filepath", source="upload")
|
|
|
145 |
infer_btn = gr.Button("Generate Image from Music")
|
146 |
#lpmc_cap = gr.Textbox(label="Lp Music Caps caption")
|
147 |
llama_trans_cap = gr.Textbox(label="Llama translation", visible=False)
|
148 |
img_result = gr.Image(label="Image Result")
|
149 |
-
tryagain_btn = gr.Button("Try
|
150 |
|
151 |
-
gr.Examples(examples=[["./examples/electronic.mp3"],["./examples/folk.wav"], ["./examples/orchestra.wav"]],
|
152 |
fn=infer,
|
153 |
-
inputs=[audio_input],
|
154 |
outputs=[img_result, llama_trans_cap, tryagain_btn],
|
155 |
cache_examples=True
|
156 |
)
|
157 |
|
158 |
#infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result])
|
159 |
-
infer_btn.click(fn=infer, inputs=[audio_input], outputs=[img_result, llama_trans_cap, tryagain_btn])
|
160 |
tryagain_btn.click(fn=solo_xd, inputs=[llama_trans_cap], outputs=[img_result])
|
161 |
|
162 |
demo.queue(max_size=20).launch()
|
|
|
7 |
from gradio_client import Client
|
8 |
|
9 |
client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token)
|
10 |
+
lyrics_client = Client("https://fffiloni-music-to-lyrics.hf.space/")
|
11 |
+
|
12 |
|
13 |
from compel import Compel, ReturnedEmbeddingsType
|
14 |
from diffusers import DiffusionPipeline
|
|
|
62 |
images = pipe(prompt=prompt).images[0]
|
63 |
return images
|
64 |
|
65 |
+
def infer(audio_file, has_lyrics):
|
66 |
+
print("NEW INFERENCE ...")
|
67 |
|
68 |
truncated_audio = cut_audio(audio_file, "trunc_audio.mp3")
|
69 |
+
|
70 |
+
print("Calling LP Music Caps...")
|
71 |
cap_result = lpmc_client(
|
72 |
truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component
|
73 |
api_name="predict"
|
74 |
)
|
75 |
+
print(f"MUSIC DESC: {cap_result}")
|
76 |
+
|
77 |
+
if has_lyrics == "Yes" :
|
78 |
+
print("""βββ
|
79 |
+
Getting Lyrics ...
|
80 |
+
""")
|
81 |
+
lyrics_result = lyrics_client.predict(
|
82 |
+
audio_file, # str (filepath or URL to file) in 'Song input' Audio component
|
83 |
+
fn_index=0
|
84 |
+
)
|
85 |
+
print(f"LYRICS: {lyrics_result}")
|
86 |
|
87 |
+
llama_q = f"""
|
88 |
+
I'll give you a music description + the lyrics of the song.
|
89 |
+
Give me an image description that would fit well with the music description, reflecting the lyrics too.
|
90 |
+
Be creative, do not do list, just an image description as required. Try to think about human characters first.
|
91 |
+
Your image description must fit well for a stable diffusion prompt.
|
92 |
+
|
93 |
+
Here's the music description :
|
94 |
+
|
95 |
+
« {cap_result} »
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
And here are the lyrics :
|
98 |
|
99 |
+
Β« {lyrics_result} Β»
|
100 |
+
|
101 |
+
"""
|
102 |
+
elif has_lyrics == "No" :
|
103 |
+
|
104 |
+
llama_q = f"""
|
105 |
+
I'll give you a music description.
|
106 |
+
Give me an image description that would fit well with the music description.
|
107 |
+
Be creative, do not do list, just an image description as required. Try to think about human characters first.
|
108 |
+
Your image description must fit well for a stable diffusion prompt.
|
109 |
+
|
110 |
+
Here's the music description :
|
111 |
+
|
112 |
+
« {cap_result} »
|
113 |
+
"""
|
114 |
+
print("""βββ
|
115 |
+
Calling Llama2 ...
|
116 |
+
""")
|
117 |
result = client.predict(
|
118 |
llama_q, # str in 'Message' Textbox component
|
119 |
api_name="/predict"
|
|
|
123 |
|
124 |
print(f"Llama2 result: {result}")
|
125 |
|
126 |
+
#Β βββ
|
127 |
+
print("""βββ
|
128 |
+
Calling SD-XL ...
|
129 |
+
""")
|
130 |
prompt = result
|
131 |
conditioning, pooled = compel(prompt)
|
132 |
images = pipe(prompt_embeds=conditioning, pooled_prompt_embeds=pooled).images[0]
|
|
|
162 |
</p>
|
163 |
</div>""")
|
164 |
audio_input = gr.Audio(label="Music input", type="filepath", source="upload")
|
165 |
+
has_lyrics = gr.Radio(label="Does your audio has lyrics ?", choices=["Yes", "No"], value="No", info="If yes, the image should reflect the lyrics, but be aware that because we add a step (getting lyrics), inference will take more time.")
|
166 |
infer_btn = gr.Button("Generate Image from Music")
|
167 |
#lpmc_cap = gr.Textbox(label="Lp Music Caps caption")
|
168 |
llama_trans_cap = gr.Textbox(label="Llama translation", visible=False)
|
169 |
img_result = gr.Image(label="Image Result")
|
170 |
+
tryagain_btn = gr.Button("Try another image ?", visible=False)
|
171 |
|
172 |
+
gr.Examples(examples=[["./examples/electronic.mp3", "No"],["./examples/folk.wav", "No"], ["./examples/orchestra.wav", "No"]],
|
173 |
fn=infer,
|
174 |
+
inputs=[audio_input, has_lyrics],
|
175 |
outputs=[img_result, llama_trans_cap, tryagain_btn],
|
176 |
cache_examples=True
|
177 |
)
|
178 |
|
179 |
#infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result])
|
180 |
+
infer_btn.click(fn=infer, inputs=[audio_input, has_lyrics], outputs=[img_result, llama_trans_cap, tryagain_btn])
|
181 |
tryagain_btn.click(fn=solo_xd, inputs=[llama_trans_cap], outputs=[img_result])
|
182 |
|
183 |
demo.queue(max_size=20).launch()
|