Spaces:
Runtime error
Runtime error
# Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation | |
# https://github.com/baegwangbin/surface_normal_uncertainty | |
import os | |
import types | |
import torch | |
import numpy as np | |
from einops import rearrange | |
from .models.NNET import NNET | |
from .utils import utils | |
from annotator.util import annotator_ckpts_path | |
import torchvision.transforms as transforms | |
class NormalBaeDetector: | |
def __init__(self): | |
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt" | |
modelpath = os.path.join(annotator_ckpts_path, "scannet.pt") | |
if not os.path.exists(modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) | |
args = types.SimpleNamespace() | |
args.mode = 'client' | |
args.architecture = 'BN' | |
args.pretrained = 'scannet' | |
args.sampling_ratio = 0.4 | |
args.importance_ratio = 0.7 | |
model = NNET(args) | |
model = utils.load_checkpoint(modelpath, model) | |
model = model.cuda() | |
model.eval() | |
self.model = model | |
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
def __call__(self, input_image): | |
assert input_image.ndim == 3 | |
image_normal = input_image | |
with torch.no_grad(): | |
image_normal = torch.from_numpy(image_normal).float().cuda() | |
image_normal = image_normal / 255.0 | |
image_normal = rearrange(image_normal, 'h w c -> 1 c h w') | |
image_normal = self.norm(image_normal) | |
normal = self.model(image_normal) | |
normal = normal[0][-1][:, :3] | |
# d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5 | |
# d = torch.maximum(d, torch.ones_like(d) * 1e-5) | |
# normal /= d | |
normal = ((normal + 1) * 0.5).clip(0, 1) | |
normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy() | |
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8) | |
return normal_image | |