artdan2023's picture
Upload 1014 files
dfc1651
raw
history blame
6.72 kB
import os
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# convert arg line to args
def convert_arg_line_to_args(arg_line):
for arg in arg_line.split():
if not arg.strip():
continue
yield str(arg)
# save args
def save_args(args, filename):
with open(filename, 'w') as f:
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
# concatenate images
def concat_image(image_path_list, concat_image_path):
imgs = [Image.open(i).convert("RGB").resize((640, 480), resample=Image.BILINEAR) for i in image_path_list]
imgs_list = []
for i in range(len(imgs)):
img = imgs[i]
imgs_list.append(np.asarray(img))
H, W, _ = np.asarray(img).shape
imgs_list.append(255 * np.ones((H, 20, 3)).astype('uint8'))
imgs_comb = np.hstack(imgs_list[:-1])
imgs_comb = Image.fromarray(imgs_comb)
imgs_comb.save(concat_image_path)
# load model
def load_checkpoint(fpath, model):
ckpt = torch.load(fpath, map_location='cpu')['model']
load_dict = {}
for k, v in ckpt.items():
if k.startswith('module.'):
k_ = k.replace('module.', '')
load_dict[k_] = v
else:
load_dict[k] = v
model.load_state_dict(load_dict)
return model
# compute normal errors
def compute_normal_errors(total_normal_errors):
metrics = {
'mean': np.average(total_normal_errors),
'median': np.median(total_normal_errors),
'rmse': np.sqrt(np.sum(total_normal_errors * total_normal_errors) / total_normal_errors.shape),
'a1': 100.0 * (np.sum(total_normal_errors < 5) / total_normal_errors.shape[0]),
'a2': 100.0 * (np.sum(total_normal_errors < 7.5) / total_normal_errors.shape[0]),
'a3': 100.0 * (np.sum(total_normal_errors < 11.25) / total_normal_errors.shape[0]),
'a4': 100.0 * (np.sum(total_normal_errors < 22.5) / total_normal_errors.shape[0]),
'a5': 100.0 * (np.sum(total_normal_errors < 30) / total_normal_errors.shape[0])
}
return metrics
# log normal errors
def log_normal_errors(metrics, where_to_write, first_line):
print(first_line)
print("mean median rmse 5 7.5 11.25 22.5 30")
print("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f" % (
metrics['mean'], metrics['median'], metrics['rmse'],
metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5']))
with open(where_to_write, 'a') as f:
f.write('%s\n' % first_line)
f.write("mean median rmse 5 7.5 11.25 22.5 30\n")
f.write("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n\n" % (
metrics['mean'], metrics['median'], metrics['rmse'],
metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5']))
# makedir
def makedir(dirpath):
if not os.path.exists(dirpath):
os.makedirs(dirpath)
# makedir from list
def make_dir_from_list(dirpath_list):
for dirpath in dirpath_list:
makedir(dirpath)
########################################################################################################################
# Visualization
########################################################################################################################
# unnormalize image
__imagenet_stats = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}
def unnormalize(img_in):
img_out = np.zeros(img_in.shape)
for ich in range(3):
img_out[:, :, ich] = img_in[:, :, ich] * __imagenet_stats['std'][ich]
img_out[:, :, ich] += __imagenet_stats['mean'][ich]
img_out = (img_out * 255).astype(np.uint8)
return img_out
# kappa to exp error (only applicable to AngMF distribution)
def kappa_to_alpha(pred_kappa):
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \
+ ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi)))
alpha = np.degrees(alpha)
return alpha
# normal vector to rgb values
def norm_to_rgb(norm):
# norm: (B, H, W, 3)
norm_rgb = ((norm[0, ...] + 1) * 0.5) * 255
norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255)
norm_rgb = norm_rgb.astype(np.uint8)
return norm_rgb
# visualize during training
def visualize(args, img, gt_norm, gt_norm_mask, norm_out_list, total_iter):
B, _, H, W = gt_norm.shape
pred_norm_list = []
pred_kappa_list = []
for norm_out in norm_out_list:
norm_out = F.interpolate(norm_out, size=[gt_norm.size(2), gt_norm.size(3)], mode='nearest')
pred_norm = norm_out[:, :3, :, :] # (B, 3, H, W)
pred_norm = pred_norm.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 3)
pred_norm_list.append(pred_norm)
pred_kappa = norm_out[:, 3:, :, :] # (B, 1, H, W)
pred_kappa = pred_kappa.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 1)
pred_kappa_list.append(pred_kappa)
# to numpy arrays
img = img.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 3)
gt_norm = gt_norm.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 3)
gt_norm_mask = gt_norm_mask.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 1)
# input image
target_path = '%s/%08d_img.jpg' % (args.exp_vis_dir, total_iter)
img = unnormalize(img[0, ...])
plt.imsave(target_path, img)
# gt norm
gt_norm_rgb = ((gt_norm[0, ...] + 1) * 0.5) * 255
gt_norm_rgb = np.clip(gt_norm_rgb, a_min=0, a_max=255)
gt_norm_rgb = gt_norm_rgb.astype(np.uint8)
target_path = '%s/%08d_gt_norm.jpg' % (args.exp_vis_dir, total_iter)
plt.imsave(target_path, gt_norm_rgb * gt_norm_mask[0, ...])
# pred_norm
for i in range(len(pred_norm_list)):
pred_norm = pred_norm_list[i]
pred_norm_rgb = norm_to_rgb(pred_norm)
target_path = '%s/%08d_pred_norm_%d.jpg' % (args.exp_vis_dir, total_iter, i)
plt.imsave(target_path, pred_norm_rgb)
pred_kappa = pred_kappa_list[i]
pred_alpha = kappa_to_alpha(pred_kappa)
target_path = '%s/%08d_pred_alpha_%d.jpg' % (args.exp_vis_dir, total_iter, i)
plt.imsave(target_path, pred_alpha[0, :, :, 0], vmin=0, vmax=60, cmap='jet')
# error in angles
DP = np.sum(gt_norm * pred_norm, axis=3, keepdims=True) # (B, H, W, 1)
DP = np.clip(DP, -1, 1)
E = np.degrees(np.arccos(DP)) # (B, H, W, 1)
E = E * gt_norm_mask
target_path = '%s/%08d_pred_error_%d.jpg' % (args.exp_vis_dir, total_iter, i)
plt.imsave(target_path, E[0, :, :, 0], vmin=0, vmax=60, cmap='jet')