Spaces:
Runtime error
Runtime error
from share import * | |
import config | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
from pytorch_lightning import seed_everything | |
from annotator.util import resize_image, HWC3 | |
from annotator.midas import MidasDetector | |
from annotator.zoe import ZoeDetector | |
from cldm.model import create_model, load_state_dict | |
from cldm.ddim_hacked import DDIMSampler | |
preprocessor = None | |
model_name = 'control_v11f1p_sd15_depth' | |
model = create_model(f'./models/{model_name}.yaml').cpu() | |
model.load_state_dict(load_state_dict('./models/v1-5-pruned.ckpt', location='cuda'), strict=False) | |
model.load_state_dict(load_state_dict(f'./models/{model_name}.pth', location='cuda'), strict=False) | |
model = model.cuda() | |
ddim_sampler = DDIMSampler(model) | |
def process(det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): | |
global preprocessor | |
if det == 'Depth_Midas': | |
if not isinstance(preprocessor, MidasDetector): | |
preprocessor = MidasDetector() | |
if det == 'Depth_Zoe': | |
if not isinstance(preprocessor, ZoeDetector): | |
preprocessor = ZoeDetector() | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
if det == 'None': | |
detected_map = input_image.copy() | |
else: | |
detected_map = preprocessor(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} | |
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) | |
# Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## Control Stable Diffusion with Depth Maps") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=12345) | |
det = gr.Radio(choices=["Depth_Zoe", "Depth_Midas", "None"], type="value", value="Depth_Zoe", label="Preprocessor") | |
with gr.Accordion("Advanced options", open=False): | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider(label="Preprocessor Resolution", minimum=128, maximum=1024, value=512, step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
eta = gr.Slider(label="DDIM ETA", minimum=0.0, maximum=1.0, value=1.0, step=0.01) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
ips = [det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch(server_name='0.0.0.0') | |