# Midas Depth Estimation # From https://github.com/isl-org/MiDaS # MIT LICENSE import cv2 import numpy as np import torch from einops import rearrange from .api import MiDaSInference class MidasDetector: def __init__(self): self.model = MiDaSInference(model_type="dpt_hybrid").cuda() def __call__(self, input_image): assert input_image.ndim == 3 image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float().cuda() image_depth = image_depth / 127.5 - 1.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model(image_depth)[0] depth -= torch.min(depth) depth /= torch.max(depth) depth = depth.cpu().numpy() depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) return depth_image