from share import * import config from cldm.hack import hack_everything hack_everything(clip_skip=2) import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.lineart_anime import LineartAnimeDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler preprocessor = None model_name = 'control_v11p_sd15s2_lineart_anime' model = create_model(f'./models/{model_name}.yaml').cpu() model.load_state_dict(load_state_dict('./models/anything-v3-full.safetensors', location='cuda'), strict=False) model.load_state_dict(load_state_dict(f'./models/{model_name}.pth', location='cuda'), strict=False) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, strength, scale, seed, eta): global preprocessor if det == 'Lineart_Anime': if not isinstance(preprocessor, LineartAnimeDetector): preprocessor = LineartAnimeDetector() with torch.no_grad(): input_image = HWC3(input_image) if det == 'None': detected_map = input_image.copy() else: detected_map = preprocessor(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = 1.0 - torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength] * 13 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Anything V3 with Anime Lineart") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") a_prompt = gr.Textbox(label="Added Prompt (Beginners do not need to change)", value='masterpiece, best quality, ultra-detailed, illustration, disheveled hair') n_prompt = gr.Textbox(label="Negative Prompt (Beginners do not need to change)", value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality') run_button = gr.Button(label="Run") num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=12345) det = gr.Radio(choices=["None", "Lineart_Anime"], type="value", value="None", label="Preprocessor") with gr.Accordion("Advanced options", open=False): image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=2048, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) detect_resolution = gr.Slider(label="Preprocessor Resolution", minimum=128, maximum=1024, value=512, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) eta = gr.Slider(label="DDIM ETA", minimum=0.0, maximum=1.0, value=1.0, step=0.01) with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')