Spaces:
Running
on
T4
Running
on
T4
File size: 13,960 Bytes
dfd72c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import numpy as np
import torch
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
# the PNG palette for DAVIS 2017 dataset
DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0"
def load_ann_png(path):
"""Load a PNG file as a mask and its palette."""
mask = Image.open(path)
palette = mask.getpalette()
mask = np.array(mask).astype(np.uint8)
return mask, palette
def save_ann_png(path, mask, palette):
"""Save a mask as a PNG file with the given palette."""
assert mask.dtype == np.uint8
assert mask.ndim == 2
output_mask = Image.fromarray(mask)
output_mask.putpalette(palette)
output_mask.save(path)
def get_per_obj_mask(mask):
"""Split a mask into per-object masks."""
object_ids = np.unique(mask)
object_ids = object_ids[object_ids > 0].tolist()
per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids}
return per_obj_mask
def put_per_obj_mask(per_obj_mask, height, width):
"""Combine per-object masks into a single mask."""
mask = np.zeros((height, width), dtype=np.uint8)
object_ids = sorted(per_obj_mask)[::-1]
for object_id in object_ids:
object_mask = per_obj_mask[object_id]
object_mask = object_mask.reshape(height, width)
mask[object_mask] = object_id
return mask
def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file):
"""Load masks from a directory as a dict of per-object masks."""
if not per_obj_png_file:
input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png")
input_mask, input_palette = load_ann_png(input_mask_path)
per_obj_input_mask = get_per_obj_mask(input_mask)
else:
per_obj_input_mask = {}
# each object is a directory in "{object_id:%03d}" format
for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
object_id = int(object_name)
input_mask_path = os.path.join(
input_mask_dir, video_name, object_name, f"{frame_name}.png"
)
input_mask, input_palette = load_ann_png(input_mask_path)
per_obj_input_mask[object_id] = input_mask > 0
return per_obj_input_mask, input_palette
def save_masks_to_dir(
output_mask_dir,
video_name,
frame_name,
per_obj_output_mask,
height,
width,
per_obj_png_file,
output_palette,
):
"""Save masks to a directory as PNG files."""
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
if not per_obj_png_file:
output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
output_mask_path = os.path.join(
output_mask_dir, video_name, f"{frame_name}.png"
)
save_ann_png(output_mask_path, output_mask, output_palette)
else:
for object_id, object_mask in per_obj_output_mask.items():
object_name = f"{object_id:03d}"
os.makedirs(
os.path.join(output_mask_dir, video_name, object_name),
exist_ok=True,
)
output_mask = object_mask.reshape(height, width).astype(np.uint8)
output_mask_path = os.path.join(
output_mask_dir, video_name, object_name, f"{frame_name}.png"
)
save_ann_png(output_mask_path, output_mask, output_palette)
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def vos_inference(
predictor,
base_video_dir,
input_mask_dir,
output_mask_dir,
video_name,
score_thresh=0.0,
use_all_masks=False,
per_obj_png_file=False,
):
"""Run VOS inference on a single video with the given predictor."""
# load the video frames and initialize the inference state on this video
video_dir = os.path.join(base_video_dir, video_name)
frame_names = [
os.path.splitext(p)[0]
for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
inference_state = predictor.init_state(
video_path=video_dir, async_loading_frames=False
)
height = inference_state["video_height"]
width = inference_state["video_width"]
input_palette = None
# fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks)
if not use_all_masks:
# use only the first video's ground-truth mask as the input mask
input_frame_inds = [0]
else:
# use all mask files available in the input_mask_dir as the input masks
if not per_obj_png_file:
input_frame_inds = [
idx
for idx, name in enumerate(frame_names)
if os.path.exists(
os.path.join(input_mask_dir, video_name, f"{name}.png")
)
]
else:
input_frame_inds = [
idx
for object_name in os.listdir(os.path.join(input_mask_dir, video_name))
for idx, name in enumerate(frame_names)
if os.path.exists(
os.path.join(input_mask_dir, video_name, object_name, f"{name}.png")
)
]
input_frame_inds = sorted(set(input_frame_inds))
# add those input masks to SAM 2 inference state before propagation
for input_frame_idx in input_frame_inds:
per_obj_input_mask, input_palette = load_masks_from_dir(
input_mask_dir=input_mask_dir,
video_name=video_name,
frame_name=frame_names[input_frame_idx],
per_obj_png_file=per_obj_png_file,
)
for object_id, object_mask in per_obj_input_mask.items():
predictor.add_new_mask(
inference_state=inference_state,
frame_idx=input_frame_idx,
obj_id=object_id,
mask=object_mask,
)
# run propagation throughout the video and collect the results in a dict
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
output_palette = input_palette or DAVIS_PALETTE
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
inference_state
):
per_obj_output_mask = {
out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
video_segments[out_frame_idx] = per_obj_output_mask
# write the output masks as palette PNG files to output_mask_dir
for out_frame_idx, per_obj_output_mask in video_segments.items():
save_masks_to_dir(
output_mask_dir=output_mask_dir,
video_name=video_name,
frame_name=frame_names[out_frame_idx],
per_obj_output_mask=per_obj_output_mask,
height=height,
width=width,
per_obj_png_file=per_obj_png_file,
output_palette=output_palette,
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--sam2_cfg",
type=str,
default="sam2_hiera_b+.yaml",
help="SAM 2 model configuration file",
)
parser.add_argument(
"--sam2_checkpoint",
type=str,
default="./checkpoints/sam2_hiera_b+.pt",
help="path to the SAM 2 model checkpoint",
)
parser.add_argument(
"--base_video_dir",
type=str,
required=True,
help="directory containing videos (as JPEG files) to run VOS prediction on",
)
parser.add_argument(
"--input_mask_dir",
type=str,
required=True,
help="directory containing input masks (as PNG files) of each video",
)
parser.add_argument(
"--video_list_file",
type=str,
default=None,
help="text file containing the list of video names to run VOS prediction on",
)
parser.add_argument(
"--output_mask_dir",
type=str,
required=True,
help="directory to save the output masks (as PNG files)",
)
parser.add_argument(
"--score_thresh",
type=float,
default=0.0,
help="threshold for the output mask logits (default: 0.0)",
)
parser.add_argument(
"--use_all_masks",
action="store_true",
help="whether to use all available PNG files in input_mask_dir "
"(default without this flag: just the first PNG file as input to the SAM 2 model; "
"usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)",
)
parser.add_argument(
"--per_obj_png_file",
action="store_true",
help="whether use separate per-object PNG files for input and output masks "
"(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; "
"note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)",
)
parser.add_argument(
"--apply_postprocessing",
action="store_true",
help="whether to apply postprocessing (e.g. hole-filling) to the output masks "
"(we don't apply such post-processing in the SAM 2 model evaluation)",
)
args = parser.parse_args()
# if we use per-object PNG files, they could possibly overlap in inputs and outputs
hydra_overrides_extra = [
"++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true")
]
predictor = build_sam2_video_predictor(
config_file=args.sam2_cfg,
ckpt_path=args.sam2_checkpoint,
apply_postprocessing=args.apply_postprocessing,
hydra_overrides_extra=hydra_overrides_extra,
)
if args.use_all_masks:
print("using all available masks in input_mask_dir as input to the SAM 2 model")
else:
print(
"using only the first frame's mask in input_mask_dir as input to the SAM 2 model"
)
# if a video list file is provided, read the video names from the file
# (otherwise, we use all subdirectories in base_video_dir)
if args.video_list_file is not None:
with open(args.video_list_file, "r") as f:
video_names = [v.strip() for v in f.readlines()]
else:
video_names = [
p
for p in os.listdir(args.base_video_dir)
if os.path.isdir(os.path.join(args.base_video_dir, p))
]
print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}")
for n_video, video_name in enumerate(video_names):
print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}")
vos_inference(
predictor=predictor,
base_video_dir=args.base_video_dir,
input_mask_dir=args.input_mask_dir,
output_mask_dir=args.output_mask_dir,
video_name=video_name,
score_thresh=args.score_thresh,
use_all_masks=args.use_all_masks,
per_obj_png_file=args.per_obj_png_file,
)
print(
f"completed VOS prediction on {len(video_names)} videos -- "
f"output masks saved to {args.output_mask_dir}"
)
if __name__ == "__main__":
main()
|