Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1" | |
import torch | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
from PIL import Image, ImageFilter | |
from sam2.build_sam import build_sam2 | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
def preprocess_image(image): | |
return image, gr.State([]), gr.State([]), image | |
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData): | |
print(f"You selected {evt.value} at {evt.index} from {evt.target}") | |
tracking_points.value.append(evt.index) | |
print(f"TRACKING POINT: {tracking_points.value}") | |
if point_type == "include": | |
trackings_input_label.value.append(1) | |
elif point_type == "exclude": | |
trackings_input_label.value.append(0) | |
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") | |
# Open the image and get its dimensions | |
transparent_background = Image.open(first_frame_path).convert('RGBA') | |
w, h = transparent_background.size | |
# Define the circle radius as a fraction of the smaller dimension | |
fraction = 0.02 # You can adjust this value as needed | |
radius = int(fraction * min(w, h)) | |
# Create a transparent layer to draw on | |
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) | |
for index, track in enumerate(tracking_points.value): | |
if trackings_input_label.value[index] == 1: | |
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) | |
else: | |
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) | |
# Convert the transparent layer back to an image | |
transparent_layer = Image.fromarray(transparent_layer, 'RGBA') | |
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) | |
return tracking_points, trackings_input_label, selected_point_map | |
# use bfloat16 for the entire notebook | |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() | |
if torch.cuda.get_device_properties(0).major >= 8: | |
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def show_mask(mask, ax, random_color=False, borders = True): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask = mask.astype(np.uint8) | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
if borders: | |
import cv2 | |
contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
# Try to smooth contours | |
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] | |
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) | |
ax.imshow(mask_image) | |
def show_points(coords, labels, ax, marker_size=375): | |
pos_points = coords[labels==1] | |
neg_points = coords[labels==0] | |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
def show_box(box, ax): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) | |
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True): | |
combined_images = [] # List to store filenames of images with masks overlaid | |
mask_images = [] # List to store filenames of separate mask images | |
for i, (mask, score) in enumerate(zip(masks, scores)): | |
# ---- Original Image with Mask Overlaid ---- | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders | |
if point_coords is not None: | |
assert input_labels is not None | |
show_points(point_coords, input_labels, plt.gca()) | |
if box_coords is not None: | |
show_box(box_coords, plt.gca()) | |
if len(scores) > 1: | |
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18) | |
plt.axis('off') | |
# Save the figure as a JPG file | |
combined_filename = f"combined_image_{i+1}.jpg" | |
plt.savefig(combined_filename, format='jpg', bbox_inches='tight') | |
combined_images.append(combined_filename) | |
plt.close() # Close the figure to free up memory | |
# ---- Separate Mask Image (White Mask on Black Background) ---- | |
# Create a black image | |
mask_image = np.zeros_like(image, dtype=np.uint8) | |
# The mask is a binary array where the masked area is 1, else 0. | |
# Convert the mask to a white color in the mask_image | |
mask_layer = (mask > 0).astype(np.uint8) * 255 | |
for c in range(3): # Assuming RGB, repeat mask for all channels | |
mask_image[:, :, c] = mask_layer | |
# Save the mask image | |
mask_filename = f"mask_image_{i+1}.png" | |
Image.fromarray(mask_image).save(mask_filename) | |
mask_images.append(mask_filename) | |
plt.close() # Close the figure to free up memory | |
return combined_images, mask_images | |
def sam_process(input_image, checkpoint, tracking_points, trackings_input_label): | |
image = Image.open(input_image) | |
image = np.array(image.convert("RGB")) | |
if checkpoint == "tiny": | |
sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt" | |
model_cfg = "sam2_hiera_t.yaml" | |
elif checkpoint == "samll": | |
sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt" | |
model_cfg = "sam2_hiera_s.yaml" | |
elif checkpoint == "base-plus": | |
sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt" | |
model_cfg = "sam2_hiera_b+.yaml" | |
elif checkpoint == "large": | |
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt" | |
model_cfg = "sam2_hiera_l.yaml" | |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda") | |
predictor = SAM2ImagePredictor(sam2_model) | |
predictor.set_image(image) | |
input_point = np.array(tracking_points.value) | |
input_label = np.array(trackings_input_label.value) | |
print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape) | |
masks, scores, logits = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=False, | |
) | |
sorted_ind = np.argsort(scores)[::-1] | |
masks = masks[sorted_ind] | |
scores = scores[sorted_ind] | |
logits = logits[sorted_ind] | |
print(masks.shape) | |
results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=False) | |
print(results) | |
return results[0], mask_results[0] | |
with gr.Blocks() as demo: | |
first_frame_path = gr.State() | |
tracking_points = gr.State([]) | |
trackings_input_label = gr.State([]) | |
with gr.Column(): | |
gr.Markdown("# SAM2 Image Predictor") | |
gr.Markdown("This is a simple demo for image segmentation with SAM2.") | |
gr.Markdown("""Instructions: | |
1. Upload your image | |
2. With 'include' point type selected, Click on the object to mask | |
3. Switch to 'exclude' point type if you want to specify an area to avoid | |
4. Submit ! | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) | |
points_map = gr.Image( | |
label="points map", | |
type="filepath", | |
interactive=True | |
) | |
with gr.Row(): | |
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include") | |
clear_points_btn = gr.Button("Clear Points") | |
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
output_result = gr.Image() | |
output_result_mask = gr.Image() | |
clear_points_btn.click( | |
fn = preprocess_image, | |
inputs = input_image, | |
outputs = [first_frame_path, tracking_points, trackings_input_label, points_map], | |
queue=False | |
) | |
points_map.upload( | |
preprocess_image, | |
points_map, | |
[first_frame_path, tracking_points, trackings_input_label, input_image], | |
queue=False | |
) | |
points_map.select( | |
get_point, | |
[point_type, tracking_points, trackings_input_label, first_frame_path], | |
[tracking_points, trackings_input_label, points_map], | |
queue=False | |
) | |
submit_btn.click( | |
fn = sam_process, | |
inputs = [input_image, checkpoint, tracking_points, trackings_input_label], | |
outputs = [output_result, output_result_mask] | |
) | |
demo.launch() |