fffiloni commited on
Commit
506f88f
·
verified ·
1 Parent(s): 033c706

try to fix get_point

Browse files
Files changed (1) hide show
  1. app.py +9 -15
app.py CHANGED
@@ -17,38 +17,32 @@ def preprocess_image(image):
17
  def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
18
  print(f"You selected {evt.value} at {evt.index} from {evt.target}")
19
 
20
- tracking_points.value.append(evt.index)
21
- print(f"TRACKING POINT: {tracking_points.value}")
22
 
23
  if point_type == "include":
24
- trackings_input_label.value.append(1)
25
  elif point_type == "exclude":
26
- trackings_input_label.value.append(0)
27
- print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
28
 
29
- # Open the image and get its dimensions
30
  transparent_background = Image.open(first_frame_path).convert('RGBA')
31
  w, h = transparent_background.size
 
32
 
33
- # Define the circle radius as a fraction of the smaller dimension
34
- fraction = 0.02 # You can adjust this value as needed
35
- radius = int(fraction * min(w, h))
36
-
37
- # Create a transparent layer to draw on
38
  transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
39
 
40
- for index, track in enumerate(tracking_points.value):
41
- if trackings_input_label.value[index] == 1:
42
  cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
43
  else:
44
  cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
45
 
46
- # Convert the transparent layer back to an image
47
  transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
48
  selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
49
 
50
  return tracking_points, trackings_input_label, selected_point_map
51
-
52
  # use bfloat16 for the entire notebook
53
  torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
54
 
 
17
  def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
18
  print(f"You selected {evt.value} at {evt.index} from {evt.target}")
19
 
20
+ tracking_points.append(evt.index)
21
+ print(f"TRACKING POINT: {tracking_points}")
22
 
23
  if point_type == "include":
24
+ trackings_input_label.append(1)
25
  elif point_type == "exclude":
26
+ trackings_input_label.append(0)
27
+ print(f"TRACKING INPUT LABEL: {trackings_input_label}")
28
 
 
29
  transparent_background = Image.open(first_frame_path).convert('RGBA')
30
  w, h = transparent_background.size
31
+ radius = int(0.02 * min(w, h))
32
 
 
 
 
 
 
33
  transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
34
 
35
+ for index, track in enumerate(tracking_points):
36
+ if trackings_input_label[index] == 1:
37
  cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
38
  else:
39
  cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
40
 
 
41
  transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
42
  selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
43
 
44
  return tracking_points, trackings_input_label, selected_point_map
45
+
46
  # use bfloat16 for the entire notebook
47
  torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
48