fffiloni commited on
Commit
6c0d568
1 Parent(s): 1351685

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +118 -0
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import torch
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ from PIL import Image
7
+ from sam2.build_sam import build_sam2
8
+ from sam2.sam2_image_predictor import SAM2ImagePredictor
9
+
10
+ # use bfloat16 for the entire notebook
11
+ torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
12
+
13
+ if torch.cuda.get_device_properties(0).major >= 8:
14
+ # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
15
+ torch.backends.cuda.matmul.allow_tf32 = True
16
+ torch.backends.cudnn.allow_tf32 = True
17
+
18
+ def show_mask(mask, ax, random_color=False, borders = True):
19
+ if random_color:
20
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
21
+ else:
22
+ color = np.array([30/255, 144/255, 255/255, 0.6])
23
+ h, w = mask.shape[-2:]
24
+ mask = mask.astype(np.uint8)
25
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
26
+ if borders:
27
+ import cv2
28
+ contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
29
+ # Try to smooth contours
30
+ contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
31
+ mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
32
+ ax.imshow(mask_image)
33
+
34
+ def show_points(coords, labels, ax, marker_size=375):
35
+ pos_points = coords[labels==1]
36
+ neg_points = coords[labels==0]
37
+ ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
38
+ ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
39
+
40
+ def show_box(box, ax):
41
+ x0, y0 = box[0], box[1]
42
+ w, h = box[2] - box[0], box[3] - box[1]
43
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
44
+
45
+ def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
46
+ masks_store = []
47
+ for i, (mask, score) in enumerate(zip(masks, scores)):
48
+ plt.figure(figsize=(10, 10))
49
+ plt.imshow(image)
50
+ show_mask(mask, plt.gca(), borders=borders)
51
+ if point_coords is not None:
52
+ assert input_labels is not None
53
+ show_points(point_coords, input_labels, plt.gca())
54
+ if box_coords is not None:
55
+ # boxes
56
+ show_box(box_coords, plt.gca())
57
+ if len(scores) > 1:
58
+ plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
59
+ plt.axis('off')
60
+ # plt.show()
61
+
62
+ # Save the figure as a JPG file
63
+ filename = f"masked_image_{i+1}.jpg"
64
+ plt.savefig(filename, format='jpg', bbox_inches='tight')
65
+
66
+ masks_store.append(filename)
67
+
68
+ # Close the figure to free up memory
69
+ plt.close()
70
+
71
+ return masks_store
72
+
73
+ def sam_process(input_image):
74
+ image = Image.open(input_image)
75
+ image = np.array(image.convert("RGB"))
76
+
77
+ sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
78
+ model_cfg = "sam2_hiera_l.yaml"
79
+
80
+ sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
81
+
82
+ predictor = SAM2ImagePredictor(sam2_model)
83
+
84
+ predictor.set_image(image)
85
+
86
+ input_point = np.array([[539 384]])
87
+ input_label = np.array([1])
88
+
89
+ print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape)
90
+
91
+ masks, scores, logits = predictor.predict(
92
+ point_coords=input_point,
93
+ point_labels=input_label,
94
+ multimask_output=True,
95
+ )
96
+ sorted_ind = np.argsort(scores)[::-1]
97
+ masks = masks[sorted_ind]
98
+ scores = scores[sorted_ind]
99
+ logits = logits[sorted_ind]
100
+
101
+ print(masks.shape)
102
+
103
+ results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
104
+ print(results)
105
+
106
+ return results
107
+
108
+ with gr.Blocks() as demo:
109
+ with gr.Column():
110
+ input_image = gr.Image(label="input image", type="filepath"),
111
+ submit_btn = gr.Button("Submit")
112
+ output_result = gr.Textbox()
113
+ submit_btn.click(
114
+ fn = sam_process,
115
+ inputs = [input_image],
116
+ outputs = [output_result]
117
+ )
118
+ demo.launch()