import gradio as gr import os os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1" import torch import spaces import numpy as np import cv2 import matplotlib.pyplot as plt from PIL import Image, ImageFilter from sam2.build_sam import build_sam2 from sam2.sam2_image_predictor import SAM2ImagePredictor def preprocess_image(image): return image, gr.State([]), gr.State([]), image def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData): print(f"You selected {evt.value} at {evt.index} from {evt.target}") tracking_points.value.append(evt.index) print(f"TRACKING POINT: {tracking_points.value}") if point_type == "include": trackings_input_label.value.append(1) elif point_type == "exclude": trackings_input_label.value.append(0) print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") # Open the image and get its dimensions transparent_background = Image.open(first_frame_path).convert('RGBA') w, h = transparent_background.size # Define the circle radius as a fraction of the smaller dimension fraction = 0.02 # You can adjust this value as needed radius = int(fraction * min(w, h)) # Create a transparent layer to draw on transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) for index, track in enumerate(tracking_points.value): if trackings_input_label.value[index] == 1: cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) else: cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) # Convert the transparent layer back to an image transparent_layer = Image.fromarray(transparent_layer, 'RGBA') selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) return tracking_points, trackings_input_label, selected_point_map # use bfloat16 for the entire notebook torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() if torch.cuda.get_device_properties(0).major >= 8: # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True def show_mask(mask, ax, random_color=False, borders = True): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask = mask.astype(np.uint8) mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) if borders: import cv2 contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Try to smooth contours contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) ax.imshow(mask_image) def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True): combined_images = [] # List to store filenames of images with masks overlaid mask_images = [] # List to store filenames of separate mask images for i, (mask, score) in enumerate(zip(masks, scores)): # ---- Original Image with Mask Overlaid ---- plt.figure(figsize=(10, 10)) plt.imshow(image) show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders """ if point_coords is not None: assert input_labels is not None show_points(point_coords, input_labels, plt.gca()) """ if box_coords is not None: show_box(box_coords, plt.gca()) if len(scores) > 1: plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18) plt.axis('off') # Save the figure as a JPG file combined_filename = f"combined_image_{i+1}.jpg" plt.savefig(combined_filename, format='jpg', bbox_inches='tight') combined_images.append(combined_filename) plt.close() # Close the figure to free up memory # ---- Separate Mask Image (White Mask on Black Background) ---- # Create a black image mask_image = np.zeros_like(image, dtype=np.uint8) # The mask is a binary array where the masked area is 1, else 0. # Convert the mask to a white color in the mask_image mask_layer = (mask > 0).astype(np.uint8) * 255 for c in range(3): # Assuming RGB, repeat mask for all channels mask_image[:, :, c] = mask_layer # Save the mask image mask_filename = f"mask_image_{i+1}.png" Image.fromarray(mask_image).save(mask_filename) mask_images.append(mask_filename) plt.close() # Close the figure to free up memory return combined_images, mask_images @spaces.GPU() def sam_process(input_image, checkpoint, tracking_points, trackings_input_label): image = Image.open(input_image) image = np.array(image.convert("RGB")) if checkpoint == "tiny": sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt" model_cfg = "sam2_hiera_t.yaml" elif checkpoint == "samll": sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt" model_cfg = "sam2_hiera_s.yaml" elif checkpoint == "base-plus": sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt" model_cfg = "sam2_hiera_b+.yaml" elif checkpoint == "large": sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt" model_cfg = "sam2_hiera_l.yaml" sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda") predictor = SAM2ImagePredictor(sam2_model) predictor.set_image(image) input_point = np.array(tracking_points.value) input_label = np.array(trackings_input_label.value) print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape) masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=False, ) sorted_ind = np.argsort(scores)[::-1] masks = masks[sorted_ind] scores = scores[sorted_ind] logits = logits[sorted_ind] print(masks.shape) results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True) print(results) return results[0], mask_results[0] with gr.Blocks() as demo: first_frame_path = gr.State() tracking_points = gr.State([]) trackings_input_label = gr.State([]) with gr.Column(): gr.Markdown("# SAM2 Image Predictor") gr.Markdown("This is a simple demo for image segmentation with SAM2.") gr.Markdown("""Instructions: 1. Upload your image 2. With 'include' point type selected, Click on the object to mask 3. Switch to 'exclude' point type if you want to specify an area to avoid 4. Submit ! """) with gr.Row(): with gr.Column(): input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) points_map = gr.Image( label="points map", type="filepath", interactive=True ) with gr.Row(): point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include") clear_points_btn = gr.Button("Clear Points") checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny") submit_btn = gr.Button("Submit") with gr.Column(): output_result = gr.Image() output_result_mask = gr.Image() clear_points_btn.click( fn = preprocess_image, inputs = input_image, outputs = [first_frame_path, tracking_points, trackings_input_label, points_map], queue=False ) points_map.upload( fn = preprocess_image, inputs = [points_map], outputs = [first_frame_path, tracking_points, trackings_input_label, input_image], queue = False ) points_map.select( fn = get_point, inputs = [point_type, tracking_points, trackings_input_label, first_frame_path], outputs = [tracking_points, trackings_input_label, points_map], queue = False ) submit_btn.click( fn = sam_process, inputs = [input_image, checkpoint, tracking_points, trackings_input_label], outputs = [output_result, output_result_mask] ) demo.launch(show_api=False, show_error=True)