File size: 25,013 Bytes
cdcfdd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import math
import os
from typing import Optional, Tuple, Union
from einops import rearrange

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.attention_processor import SpatialNorm

from allegro.models.vae.modules import DownEncoderBlock3D, UNetMidBlock3DConv, UpDecoderBlock3D


class Encoder3D(nn.Module):
    def __init__(
        self,
        in_channels=3,
        out_channels=3,
        num_blocks=4,
        blocks_temp_li=[False, False, False, False],
        block_out_channels=(64,),
        layers_per_block=2,
        norm_num_groups=32,
        act_fn="silu",
        double_z=True,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block
        self.blocks_temp_li = blocks_temp_li

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.temp_conv_in = nn.Conv3d(
            block_out_channels[0],
            block_out_channels[0],
            (3,1,1),
            padding = (1, 0, 0)
        )

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i in range(num_blocks):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = DownEncoderBlock3D(
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                add_temp_downsample=blocks_temp_li[i],
                resnet_eps=1e-6,
                downsample_padding=0,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock3DConv(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=None,
        )

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels

        self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3,1,1), padding = (1, 0, 0))

        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)

        nn.init.zeros_(self.temp_conv_in.weight)
        nn.init.zeros_(self.temp_conv_in.bias)
        nn.init.zeros_(self.temp_conv_out.weight)
        nn.init.zeros_(self.temp_conv_out.bias)

        self.gradient_checkpointing = False

    def forward(self, x):
        '''
            x: [b, c, (tb f), h, w]
        '''
        bz = x.shape[0]
        sample = rearrange(x, 'b c n h w -> (b n) c h w')
        sample = self.conv_in(sample)

        sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
        temp_sample = sample
        sample = self.temp_conv_in(sample) 
        sample = sample+temp_sample
        # down
        for b_id, down_block in enumerate(self.down_blocks):
            sample = down_block(sample)
        # middle
        sample = self.mid_block(sample)

        # post-process
        sample = rearrange(sample, 'b c n h w -> (b n) c h w')
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)

        temp_sample = sample
        sample = self.temp_conv_out(sample) 
        sample = sample+temp_sample
        sample = rearrange(sample, 'b c n h w -> (b n) c h w')

        sample = self.conv_out(sample)
        sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
        return sample
    
class Decoder3D(nn.Module):
    def __init__(
        self,
        in_channels=4,
        out_channels=3,
        num_blocks=4,
        blocks_temp_li=[False, False, False, False],
        block_out_channels=(64,),
        layers_per_block=2,
        norm_num_groups=32,
        act_fn="silu",
        norm_type="group",  # group, spatial
    ):
        super().__init__()
        self.layers_per_block = layers_per_block
        self.blocks_temp_li = blocks_temp_li

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.temp_conv_in = nn.Conv3d(
            block_out_channels[-1],
            block_out_channels[-1],
            (3,1,1),
            padding = (1, 0, 0)
        )

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock3DConv(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i in range(num_blocks):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = UpDecoderBlock3D(
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                add_upsample=not is_final_block,
                add_temp_upsample=blocks_temp_li[i],
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()

        self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3,1,1), padding = (1, 0, 0))
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        nn.init.zeros_(self.temp_conv_in.weight)
        nn.init.zeros_(self.temp_conv_in.bias)
        nn.init.zeros_(self.temp_conv_out.weight)
        nn.init.zeros_(self.temp_conv_out.bias)

        self.gradient_checkpointing = False

    def forward(self, z):
        bz = z.shape[0]
        sample = rearrange(z, 'b c n h w -> (b n) c h w')
        sample = self.conv_in(sample)

        sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
        temp_sample = sample
        sample = self.temp_conv_in(sample) 
        sample = sample+temp_sample

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        # middle
        sample = self.mid_block(sample)
        sample = sample.to(upscale_dtype)

        # up
        for b_id, up_block in enumerate(self.up_blocks):
            sample = up_block(sample)

        # post-process
        sample = rearrange(sample, 'b c n h w -> (b n) c h w')
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)

        sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
        temp_sample = sample
        sample = self.temp_conv_out(sample)
        sample = sample+temp_sample
        sample = rearrange(sample, 'b c n h w -> (b n) c h w')

        sample = self.conv_out(sample)
        sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
        return sample
    


class AllegroAutoencoderKL3D(ModelMixin, ConfigMixin):
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
        sample_size (`int`, *optional*, defaults to `256`): Spatial Tiling Size.
        tile_overlap (`tuple`, *optional*, defaults to `(120, 80`): Spatial overlapping size while tiling (height, width)
        chunk_len (`int`, *optional*, defaults to `24`): Temporal Tiling Size.
        t_over (`int`, *optional*, defaults to `8`): Temporal overlapping size while tiling
        scaling_factor (`float`, *optional*, defaults to 0.13235):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
        blocks_tempdown_li (`List`, *optional*, defaults to `[True, True, False, False]`): Each item indicates whether each TemporalBlock in the Encoder performs temporal downsampling.
        blocks_tempup_li (`List`, *optional*, defaults to `[False, True, True, False]`): Each item indicates whether each TemporalBlock in the Decoder performs temporal upsampling.
        load_mode (`str`, *optional*, defaults to `full`): Load mode for the model. Can be one of `full`, `encoder_only`, `decoder_only`. which corresponds to loading the full model state dicts, only the encoder state dicts, or only the decoder state dicts.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_num: int = 4,
        up_block_num: int = 4,
        block_out_channels: Tuple[int] = (128,256,512,512),
        layers_per_block: int = 2,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 320,
        tile_overlap: tuple = (120, 80),
        force_upcast: bool = True,
        chunk_len: int = 24,
        t_over: int = 8,
        scale_factor: float = 0.13235,
        blocks_tempdown_li=[True, True, False, False],
        blocks_tempup_li=[False, True, True, False],
        load_mode = 'full',
    ):
        super().__init__()

        self.blocks_tempdown_li = blocks_tempdown_li
        self.blocks_tempup_li = blocks_tempup_li
        # pass init params to Encoder
        self.load_mode = load_mode
        if load_mode in ['full', 'encoder_only']:
            self.encoder = Encoder3D(
                in_channels=in_channels,
                out_channels=latent_channels,
                num_blocks=down_block_num,
                blocks_temp_li=blocks_tempdown_li,
                block_out_channels=block_out_channels,
                layers_per_block=layers_per_block,
                act_fn=act_fn,
                norm_num_groups=norm_num_groups,
                double_z=True,
            )
            self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)

        if load_mode in ['full', 'decoder_only']:
            # pass init params to Decoder
            self.decoder = Decoder3D(
                in_channels=latent_channels,
                out_channels=out_channels,
                num_blocks=up_block_num,
                blocks_temp_li=blocks_tempup_li,
                block_out_channels=block_out_channels,
                layers_per_block=layers_per_block,
                norm_num_groups=norm_num_groups,
                act_fn=act_fn,
            )
            self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)


        # only relevant if vae tiling is enabled
        sample_size = (
            sample_size[0]
            if isinstance(sample_size, (list, tuple))
            else sample_size
        )
        self.tile_overlap = tile_overlap
        self.vae_scale_factor=[4, 8, 8]
        self.scale_factor = scale_factor
        self.sample_size = sample_size
        self.chunk_len = chunk_len
        self.t_over = t_over

        self.latent_chunk_len = self.chunk_len//4
        self.latent_t_over = self.t_over//4 
        self.kernel = (self.chunk_len, self.sample_size, self.sample_size) #(24, 256, 256)
        self.stride = (self.chunk_len - self.t_over, self.sample_size-self.tile_overlap[0], self.sample_size-self.tile_overlap[1])  # (16, 112, 192)


    def encode(self, input_imgs: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        KERNEL = self.kernel
        STRIDE = self.stride
        LOCAL_BS = local_batch_size
        OUT_C = 8

        B, C, N, H, W = input_imgs.shape
        
       
        out_n = math.floor((N - KERNEL[0]) / STRIDE[0]) + 1
        out_h = math.floor((H - KERNEL[1]) / STRIDE[1]) + 1
        out_w = math.floor((W - KERNEL[2]) / STRIDE[2]) + 1
        
        ## cut video into overlapped small cubes and batch forward
        num = 0

        out_latent = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8), device=input_imgs.device, dtype=input_imgs.dtype) 
        vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)

        for i in range(out_n):
            for j in range(out_h):
                for k in range(out_w):
                    n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
                    h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
                    w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
                    video_cube = input_imgs[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
                    vae_batch_input[num%LOCAL_BS] = video_cube
                    
                    if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:                        
                        latent = self.encoder(vae_batch_input)
                        
                        if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
                            out_latent[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
                        else:
                            out_latent[num-LOCAL_BS+1:num+1] = latent
                        vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
                    num+=1
        
        ## flatten the batched out latent to videos and supress the overlapped parts
        B, C, N, H, W = input_imgs.shape

        out_video_cube = torch.zeros((B, OUT_C, N//4, H//8, W//8), device=input_imgs.device, dtype=input_imgs.dtype)
        OUT_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
        OUT_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
        OVERLAP = OUT_KERNEL[0]-OUT_STRIDE[0], OUT_KERNEL[1]-OUT_STRIDE[1], OUT_KERNEL[2]-OUT_STRIDE[2]
        
        for i in range(out_n):
            n_start, n_end = i * OUT_STRIDE[0], i * OUT_STRIDE[0] + OUT_KERNEL[0]
            for j in range(out_h):
                h_start, h_end = j * OUT_STRIDE[1], j * OUT_STRIDE[1] + OUT_KERNEL[1]
                for k in range(out_w):
                    w_start, w_end = k * OUT_STRIDE[2], k * OUT_STRIDE[2] + OUT_KERNEL[2]
                    latent_mean_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), out_latent[i*out_h*out_w+j*out_w+k].unsqueeze(0))
                    out_video_cube[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean_blend
        
        ## final conv
        out_video_cube = rearrange(out_video_cube, 'b c n h w -> (b n) c h w')
        out_video_cube = self.quant_conv(out_video_cube)
        out_video_cube = rearrange(out_video_cube, '(b n) c h w -> b c n h w', b=B)

        posterior = DiagonalGaussianDistribution(out_video_cube)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)
    

    def decode(self, input_latents: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[DecoderOutput, torch.Tensor]:
        KERNEL = self.kernel
        STRIDE = self.stride
        
        LOCAL_BS = local_batch_size
        OUT_C = 3
        IN_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
        IN_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8

        B, C, N, H, W = input_latents.shape

        ## post quant conv (a mapping)
        input_latents = rearrange(input_latents, 'b c n h w -> (b n) c h w')
        input_latents = self.post_quant_conv(input_latents)
        input_latents = rearrange(input_latents, '(b n) c h w -> b c n h w', b=B)
        
        ## out tensor shape
        out_n = math.floor((N - IN_KERNEL[0]) / IN_STRIDE[0]) + 1
        out_h = math.floor((H - IN_KERNEL[1]) / IN_STRIDE[1]) + 1
        out_w = math.floor((W - IN_KERNEL[2]) / IN_STRIDE[2]) + 1

        ## cut latent into overlapped small cubes and batch forward
        num = 0
        decoded_cube = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype) 
        vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
        for i in range(out_n):
            for j in range(out_h):
                for k in range(out_w):
                    n_start, n_end = i * IN_STRIDE[0], i * IN_STRIDE[0] + IN_KERNEL[0]
                    h_start, h_end = j * IN_STRIDE[1], j * IN_STRIDE[1] + IN_KERNEL[1]
                    w_start, w_end = k * IN_STRIDE[2], k * IN_STRIDE[2] + IN_KERNEL[2]
                    latent_cube = input_latents[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
                    vae_batch_input[num%LOCAL_BS] = latent_cube
                    if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
                        
                        latent = self.decoder(vae_batch_input)
                        
                        if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
                            decoded_cube[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
                        else:
                            decoded_cube[num-LOCAL_BS+1:num+1] = latent
                        vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
                    num+=1
        B, C, N, H, W = input_latents.shape
        
        out_video = torch.zeros((B, OUT_C, N*4, H*8, W*8), device=input_latents.device, dtype=input_latents.dtype)
        OVERLAP = KERNEL[0]-STRIDE[0], KERNEL[1]-STRIDE[1], KERNEL[2]-STRIDE[2]
        for i in range(out_n):
            n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
            for j in range(out_h):
                h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
                for k in range(out_w):
                    w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
                    out_video_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), decoded_cube[i*out_h*out_w+j*out_w+k].unsqueeze(0))
                    out_video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
       
        out_video = rearrange(out_video, 'b c t h w -> b t c h w').contiguous()

        decoded = out_video
        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)
    
    def forward(
        self,
        sample: torch.Tensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
        encoder_local_batch_size: int = 2,
        decoder_local_batch_size: int = 2,
    ) -> Union[DecoderOutput, torch.Tensor]:
        r"""
        Args:
            sample (`torch.Tensor`): Input sample.
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
            generator (`torch.Generator`, *optional*): 
                PyTorch random number generator.
            encoder_local_batch_size (`int`, *optional*, defaults to 2):
                Local batch size for the encoder's batch inference.
            decoder_local_batch_size (`int`, *optional*, defaults to 2):
                Local batch size for the decoder's batch inference.
        """
        x = sample
        posterior = self.encode(x, local_batch_size=encoder_local_batch_size).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z, local_batch_size=decoder_local_batch_size).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)
    
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        kwargs["torch_type"] = torch.float32
        return super().from_pretrained(pretrained_model_name_or_path, **kwargs)


def prepare_for_blend(n_param, h_param, w_param, x):
    n, n_max, overlap_n = n_param
    h, h_max, overlap_h = h_param
    w, w_max, overlap_w = w_param
    if overlap_n > 0:
        if n > 0: # the head overlap part decays from 0 to 1
            x[:,:,0:overlap_n,:,:] = x[:,:,0:overlap_n,:,:] * (torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
        if n < n_max-1:  # the tail overlap part decays from 1 to 0
            x[:,:,-overlap_n:,:,:] = x[:,:,-overlap_n:,:,:] * (1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
    if h > 0:
        x[:,:,:,0:overlap_h,:] = x[:,:,:,0:overlap_h,:] * (torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
    if h < h_max-1:
        x[:,:,:,-overlap_h:,:] = x[:,:,:,-overlap_h:,:] * (1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
    if w > 0:
        x[:,:,:,:,0:overlap_w] = x[:,:,:,:,0:overlap_w] * (torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
    if w < w_max-1:
        x[:,:,:,:,-overlap_w:] = x[:,:,:,:,-overlap_w:] * (1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
    return x