File size: 18,282 Bytes
b140fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.models.cross_attention import CrossAttention
#from pipeline_sd import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
import matplotlib.pyplot as plt
from prompt2prompt.ptp_utils import AttentionStore
import prompt2prompt.ptp_utils as ptp_utils
from PIL import Image
class Prompt2PromptPipeline(StableDiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = None,
width: Optional[int] = None,
controller: AttentionStore = None, # 传入attention_store作为p2p的控制。
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
self.register_attention_control(controller) # add attention controller
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# step callback
latents = controller.step_callback(latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def register_attention_control(self, controller):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.unet.config.block_out_channels[-1]
place_in_unet = "mid"
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
place_in_unet = "up"
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.unet.config.block_out_channels[block_id]
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = P2PCrossAttnProcessor(
controller=controller, place_in_unet=place_in_unet
)
self.unet.set_attn_processor(attn_procs)
controller.num_att_layers = cross_att_count
# def aggregate_attention(self, prompts, attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
# out = []
# attention_maps = attention_store.get_average_attention()
# num_pixels = res ** 2
# for location in from_where:
# for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
# if item.shape[1] == num_pixels:
# cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
# out.append(cross_maps)
# out = torch.cat(out, dim=0)
# out = out.sum(0) / out.shape[0]
# return out.cpu()
def aggregate_attention(self, prompts, attention_store: AttentionStore, res: List[int], from_where: List[str], is_cross: bool, select: int):
out = []
attention_maps = attention_store.get_average_attention()
# num_pixels = res ** 2
num_pixels = res[0] * res[1]
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res[0], res[1], item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out = out.sum(0) / out.shape[0]
return out.cpu()
def show_cross_attention(self, prompts, attention_store: AttentionStore, res: List[int], from_where: List[str], select: int = 0, image_size: List[int]=[1024, 256], num_rows: int = 1, font_scale=2, thickness=4, cmap_name="plasma"):
tokens = self.tokenizer.encode(prompts[select])
decoder = self.tokenizer.decode
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select)
images = []
cmap = plt.get_cmap(cmap_name)
cmap_r = cmap.reversed()
for i in range(len(tokens)):
image = attention_maps[:, :, i]
image = 255 * image / image.max()
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.numpy().astype(np.uint8)
# image = np.array(Image.fromarray(image).resize((256, 256)))
# image = np.array(Image.fromarray(image).resize((512, 128)))
image = cmap(np.array(image)[:,:,0])[:, :, :3] # 省略透明度通道
# image = image ** 2
image = (image - image.min()) / (image.max() - image.min())
image = Image.fromarray(np.uint8(image*255))
# image = np.array(image.resize((1024, 256)))
image = np.array(image.resize(image_size))
image = ptp_utils.text_under_image(image, decoder(int(tokens[i])), font_scale=font_scale, thickness=thickness)
images.append(image)
return ptp_utils.view_images(np.stack(images, axis=0), num_rows=num_rows)
# def show_cross_attention(self, prompts, attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0):
# tokens = self.tokenizer.encode(prompts[select])
# decoder = self.tokenizer.decode
# attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select)
# images = []
# for i in range(len(tokens)):
# image = attention_maps[:, :, i]
# image = 255 * image / image.max()
# image = image.unsqueeze(-1).expand(*image.shape, 3)
# image = image.numpy().astype(np.uint8)
# image = np.array(Image.fromarray(image).resize((256, 256)))
# image = ptp_utils.text_under_image(image, decoder(int(tokens[i])))
# images.append(image)
# ptp_utils.view_images(np.stack(images, axis=0))
def show_self_attention_comp(self, prompts, attention_store: AttentionStore, res: int, from_where: List[str],
max_com=10, select: int = 0):
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select).numpy().reshape((res ** 2, res ** 2))
u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True))
images = []
for i in range(max_com):
image = vh[i].reshape(res, res)
image = image - image.min()
image = 255 * image / image.max()
image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8)
image = Image.fromarray(image).resize((256, 256))
image = np.array(image)
images.append(image)
ptp_utils.view_images(np.concatenate(images, axis=1))
class P2PCrossAttnProcessor:
def __init__(self, controller, place_in_unet):
super().__init__()
self.controller = controller
self.place_in_unet = place_in_unet
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size)
query = attn.to_q(hidden_states)
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# one line change
self.controller(attention_probs, is_cross, self.place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states |