File size: 22,003 Bytes
b140fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import abc
import cv2
import numpy as np
import torch
from IPython.display import display
from PIL import Image
from typing import Union, Tuple, List, Dict, Optional
import torch.nn.functional as nnf
from PIL import Image, ImageDraw, ImageFont
# def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)) -> np.ndarray:
# h, w, c = image.shape
# offset = int(h * .2)
# img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
# font = cv2.FONT_HERSHEY_SIMPLEX
# img[:h] = image
# textsize = cv2.getTextSize(text, font, 1, 2)[0]
# text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
# cv2.putText(img, text, (text_x, text_y), font, 1, text_color, 2)
# return img
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0), font_scale: float = 1.0, thickness: int = 3) -> np.ndarray:
h, w, c = image.shape
# offset = int(h * .3)
offset = int(h * .2)
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
font = cv2.FONT_HERSHEY_SIMPLEX
img[:h] = image
textsize = cv2.getTextSize(text, font, font_scale, thickness)[0]
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
cv2.putText(img, text, (text_x, text_y), font, font_scale, text_color, 2)
return img
def text_under_image_pil(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0), font_scale: float = 1.0) -> np.ndarray:
image_pil = Image.fromarray(image)
draw = ImageDraw.Draw(image_pil)
font_size = int(font_scale * image.shape[0] / 20)
# font = ImageFont.truetype("arial.ttf", font_size)
font_path = "./Roboto-Regular.ttf"
font = ImageFont.truetype(font_path, font_size)
textsize = draw.textsize(text, font=font)
text_x = (image.shape[1] - textsize[0]) // 2
text_y = image.shape[0]
draw.text((text_x, text_y), text, font=font, fill=text_color)
return np.array(image_pil)
def view_images(images: Union[np.ndarray, List],
num_rows: int = 1,
offset_ratio: float = 0.02,
display_image: bool = True) -> Image.Image:
""" Displays a list of images in a grid. """
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
if display_image:
display(pil_img)
return pil_img
def view_images_with_texts(images: Union[np.ndarray, List],
texts: Union[str, List[str]],
num_rows: int = 1,
offset_ratio: float = 0.02,
font_scale: float = 1.0,
display_image: bool = True) -> Image.Image:
""" Displays a list of images in a grid with texts below them. """
# Ensure texts is a list
if isinstance(texts, str):
texts = [texts] * len(images)
# Add text under each image
images_with_texts = [text_under_image(img, txt, font_scale=font_scale) for img, txt in zip(images, texts)]
if type(images_with_texts) is list:
num_empty = len(images_with_texts) % num_rows
elif images_with_texts.ndim == 4:
num_empty = images_with_texts.shape[0] % num_rows
else:
images_with_texts = [images_with_texts]
num_empty = 0
empty_images = np.ones(images_with_texts[0].shape, dtype=np.uint8) * 255
images_with_texts = [image.astype(np.uint8) for image in images_with_texts] + [empty_images] * num_empty
num_items = len(images_with_texts)
h, w, c = images_with_texts[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images_with_texts[
i * num_cols + j]
pil_img = Image.fromarray(image_)
if display_image:
display(pil_img)
return pil_img
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward (self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
class LocalBlend:
def __call__(self, x_t, attention_store):
k = 1
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
mask = nnf.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = (mask[:1] + mask[1:]).float()
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(self, prompts: List[str], words: [List[List[str]]], tokenizer, device, dtype=torch.float32, threshold=.3, max_num_words=77):
self.max_num_words = 77
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device, dtype)
self.threshold = threshold
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= 16 ** 2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
# FIXME not replace correctly
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
attn[1:] = attn_repalce_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(self, prompts, num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend],
tokenizer,
device,
dtype):
super(AttentionControlEdit, self).__init__()
# add tokenizer and device here
self.tokenizer = tokenizer
self.device = device
self.dtype = dtype
self.batch_size = len(prompts)
self.cross_replace_alpha = get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, self.tokenizer).to(self.device, self.dtype)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend # 在外面定义后传进来
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None, tokenizer=None, device=None, dtype=torch.float32):
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, dtype)
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device, dtype=dtype)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None, tokenizer=None, device=None, dtype=torch.float32):
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, dtype)
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
self.mapper, alphas = self.mapper.to(self.device, self.dtype), alphas.to(self.device, self.dtype)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
class AttentionReweight(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
if self.prev_controller is not None:
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
return attn_replace
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None, tokenizer=None, device=None, dtype=torch.float32):
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, dtype)
self.equalizer = equalizer.to(self.device, self.dtype)
self.prev_controller = controller
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch.float32)
for word in word_select:
inds = get_word_inds(text, word, tokenizer)
equalizer[:, inds] = values
return equalizer
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
word_inds: Optional[torch.Tensor]=None):
if type(bounds) is float:
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[: start, prompt_ind, word_inds] = 0
alpha[start: end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(prompts, num_steps,
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
tokenizer, max_num_words=77):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0., 1.)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
return alpha_time_words
# seg_alinger
class ScoreParams:
def __init__(self, gap, match, mismatch):
self.gap = gap
self.match = match
self.mismatch = mismatch
def mis_match_char(self, x, y):
if x != y:
return self.mismatch
else:
return self.match
def get_matrix(size_x, size_y, gap):
matrix = []
for i in range(len(size_x) + 1):
sub_matrix = []
for j in range(len(size_y) + 1):
sub_matrix.append(0)
matrix.append(sub_matrix)
for j in range(1, len(size_y) + 1):
matrix[0][j] = j*gap
for i in range(1, len(size_x) + 1):
matrix[i][0] = i*gap
return matrix
def get_matrix(size_x, size_y, gap):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
return matrix
def get_traceback_matrix(size_x, size_y):
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
matrix[0, 1:] = 1
matrix[1:, 0] = 2
matrix[0, 0] = 4
return matrix
def global_align(x, y, score):
matrix = get_matrix(len(x), len(y), score.gap)
trace_back = get_traceback_matrix(len(x), len(y))
for i in range(1, len(x) + 1):
for j in range(1, len(y) + 1):
left = matrix[i, j - 1] + score.gap
up = matrix[i - 1, j] + score.gap
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
matrix[i, j] = max(left, up, diag)
if matrix[i, j] == left:
trace_back[i, j] = 1
elif matrix[i, j] == up:
trace_back[i, j] = 2
else:
trace_back[i, j] = 3
return matrix, trace_back
def get_aligned_sequences(x, y, trace_back):
x_seq = []
y_seq = []
i = len(x)
j = len(y)
mapper_y_to_x = []
while i > 0 or j > 0:
if trace_back[i, j] == 3:
x_seq.append(x[i-1])
y_seq.append(y[j-1])
i = i-1
j = j-1
mapper_y_to_x.append((j, i))
elif trace_back[i][j] == 1:
x_seq.append('-')
y_seq.append(y[j-1])
j = j-1
mapper_y_to_x.append((j, -1))
elif trace_back[i][j] == 2:
x_seq.append(x[i-1])
y_seq.append('-')
i = i-1
elif trace_back[i][j] == 4:
break
mapper_y_to_x.reverse()
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
def get_mapper(x: str, y: str, tokenizer, max_len=77):
x_seq = tokenizer.encode(x)
y_seq = tokenizer.encode(y)
score = ScoreParams(0, 1, -1)
matrix, trace_back = global_align(x_seq, y_seq, score)
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
alphas = torch.ones(max_len)
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
mapper = torch.zeros(max_len, dtype=torch.int64)
mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
return mapper, alphas
def get_refinement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers, alphas = [], []
for i in range(1, len(prompts)):
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
alphas.append(alpha)
return torch.stack(mappers), torch.stack(alphas)
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
words_x = x.split(' ')
words_y = y.split(' ')
if len(words_x) != len(words_y):
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
mapper = np.zeros((max_len, max_len))
i = j = 0
cur_inds = 0
while i < max_len and j < max_len:
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
if len(inds_source_) == len(inds_target_):
mapper[inds_source_, inds_target_] = 1
else:
ratio = 1 / len(inds_target_)
for i_t in inds_target_:
mapper[inds_source_, i_t] = ratio
cur_inds += 1
i += len(inds_source_)
j += len(inds_target_)
elif cur_inds < len(inds_source):
mapper[i, j] = 1
i += 1
j += 1
else:
mapper[j, j] = 1
i += 1
j += 1
return torch.from_numpy(mapper).float()
def get_replacement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers = []
for i in range(1, len(prompts)):
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
return torch.stack(mappers) |