Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -206,6 +206,10 @@ def infer_inp(prompt, audio_path, mask_start_point, mask_end_point, progress=gr.
|
|
206 |
post_masked_spec = denormalize(masked_spec).to(device, dtype)
|
207 |
denorm_masked_spec = denormalize_spectrogram(post_masked_spec)
|
208 |
denorm_masked_spec_audio = vocoder.inference(denorm_masked_spec)
|
|
|
|
|
|
|
|
|
209 |
|
210 |
denorm_spec = denormalize_spectrogram(output_spec)
|
211 |
denorm_spec_audio = vocoder.inference(denorm_spec)
|
@@ -225,7 +229,9 @@ def infer_inp(prompt, audio_path, mask_start_point, mask_end_point, progress=gr.
|
|
225 |
print("Output spectrogram min/max:", output_spec.min().item(), output_spec.max().item())
|
226 |
|
227 |
# Save as WAV
|
228 |
-
sf.write("
|
|
|
|
|
229 |
|
230 |
# Save input spectrogram image
|
231 |
input_spec_image_path = "input_spectrogram.png"
|
@@ -235,7 +241,7 @@ def infer_inp(prompt, audio_path, mask_start_point, mask_end_point, progress=gr.
|
|
235 |
output_spec_image_path = "output_spectrogram.png"
|
236 |
color_output_spec_image.save(output_spec_image_path)
|
237 |
|
238 |
-
return "
|
239 |
|
240 |
def load_input_spectrogram(audio_path):
|
241 |
# Loading
|
@@ -380,6 +386,11 @@ with gr.Blocks(css=css) as demo:
|
|
380 |
with gr.Column():
|
381 |
input_spectrogram_inp = gr.Image(label="Input Spectrogram")
|
382 |
output_spectrogram_inp = gr.Image(label="Output Spectrogram")
|
|
|
|
|
|
|
|
|
|
|
383 |
|
384 |
gr.Examples(
|
385 |
examples = [
|
@@ -415,7 +426,7 @@ with gr.Blocks(css=css) as demo:
|
|
415 |
submit_btn_inp.click(
|
416 |
fn = infer_inp,
|
417 |
inputs = [prompt_inp, audio_in_inp, mask_start_point, mask_end_point],
|
418 |
-
outputs = [audio_out_inp, input_spectrogram_inp, output_spectrogram_inp]
|
419 |
)
|
420 |
|
421 |
demo.queue().launch(show_api=False, show_error=True)
|
|
|
206 |
post_masked_spec = denormalize(masked_spec).to(device, dtype)
|
207 |
denorm_masked_spec = denormalize_spectrogram(post_masked_spec)
|
208 |
denorm_masked_spec_audio = vocoder.inference(denorm_masked_spec)
|
209 |
+
|
210 |
+
# Rescale generated spectrogram to match original range
|
211 |
+
output_spec = (output_spec - output_spec.min()) / (output_spec.max() - output_spec.min()) # Normalize to [0,1]
|
212 |
+
output_spec = output_spec * (norm_spec.max() - norm_spec.min()) + norm_spec.min() # Rescale to match input range
|
213 |
|
214 |
denorm_spec = denormalize_spectrogram(output_spec)
|
215 |
denorm_spec_audio = vocoder.inference(denorm_spec)
|
|
|
229 |
print("Output spectrogram min/max:", output_spec.min().item(), output_spec.max().item())
|
230 |
|
231 |
# Save as WAV
|
232 |
+
sf.write("raw_output.wav", raw_chunk_audio, 16000)
|
233 |
+
sf.write("masked_raw_output.wav", denorm_masked_spec_audio, 16000)
|
234 |
+
sf.write("generated_output.wav", denorm_spec_audio, 16000)
|
235 |
|
236 |
# Save input spectrogram image
|
237 |
input_spec_image_path = "input_spectrogram.png"
|
|
|
241 |
output_spec_image_path = "output_spectrogram.png"
|
242 |
color_output_spec_image.save(output_spec_image_path)
|
243 |
|
244 |
+
return "raw_output.wav", input_spec_image_path, color_output_spec_image, "raw_output.wav", "masked_raw_output.wav"
|
245 |
|
246 |
def load_input_spectrogram(audio_path):
|
247 |
# Loading
|
|
|
386 |
with gr.Column():
|
387 |
input_spectrogram_inp = gr.Image(label="Input Spectrogram")
|
388 |
output_spectrogram_inp = gr.Image(label="Output Spectrogram")
|
389 |
+
|
390 |
+
with gr.Accordion("Raw Processed audio", open=False):
|
391 |
+
with gr.Column():
|
392 |
+
raw_out_audio = gr.Audio(label="RAW Audio")
|
393 |
+
raw_masked_out_audio = gr.Audio(label="RAW Masked Audio")
|
394 |
|
395 |
gr.Examples(
|
396 |
examples = [
|
|
|
426 |
submit_btn_inp.click(
|
427 |
fn = infer_inp,
|
428 |
inputs = [prompt_inp, audio_in_inp, mask_start_point, mask_end_point],
|
429 |
+
outputs = [audio_out_inp, input_spectrogram_inp, output_spectrogram_inp, raw_out_audio, raw_masked_out_audio]
|
430 |
)
|
431 |
|
432 |
demo.queue().launch(show_api=False, show_error=True)
|