import gradio as gr from urllib.parse import urlparse import requests import time import os from utils.gradio_helpers import parse_outputs, process_outputs inputs = [] inputs.append(gr.Textbox( label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.''' )) inputs.append(gr.Textbox( label="Negative Prompt", info='''Things you do not want to see in your image''' )) inputs.append(gr.Image( label="Subject", type="filepath" )) inputs.append(gr.Slider( label="Number Of Outputs", info='''The number of images to generate.''', value=3, minimum=1, maximum=20, step=1, )) inputs.append(gr.Slider( label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1, minimum=1, maximum=4, step=1, )) inputs.append(gr.Checkbox( label="Randomise Poses", info='''Randomise the poses used.''', value=True )) inputs.append(gr.Dropdown( choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp" )) inputs.append(gr.Number( label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80 )) inputs.append(gr.Number( label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None )) names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed'] outputs = [] outputs.append(gr.Image()) outputs.append(gr.Image()) outputs.append(gr.Image()) outputs.append(gr.Image()) outputs.append(gr.Image()) expected_outputs = len(outputs) def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): headers = {'Content-Type': 'application/json'} payload = {"input": {}} base_url = "http://0.0.0.0:7860" for i, key in enumerate(names): value = args[i] if value and (os.path.exists(str(value))): value = f"{base_url}/file=" + value if value is not None and value != "": payload["input"][key] = value response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) if response.status_code == 201: follow_up_url = response.json()["urls"]["get"] response = requests.get(follow_up_url, headers=headers) while response.json()["status"] != "succeeded": if response.json()["status"] == "failed": raise gr.Error("The submission failed!") response = requests.get(follow_up_url, headers=headers) time.sleep(1) if response.status_code == 200: json_response = response.json() #If the output component is JSON return the entire output response if(outputs[0].get_config()["name"] == "json"): return json_response["output"] predict_outputs = parse_outputs(json_response["output"]) processed_outputs = process_outputs(predict_outputs) difference_outputs = expected_outputs - len(processed_outputs) # If less outputs than expected, hide the extra ones if difference_outputs > 0: extra_outputs = [gr.update(visible=False)] * difference_outputs processed_outputs.extend(extra_outputs) # If more outputs than expected, cap the outputs to the expected number elif difference_outputs < 0: processed_outputs = processed_outputs[:difference_outputs] return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] else: if(response.status_code == 409): raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") raise gr.Error(f"The submission failed! Error: {response.status_code}") title = "Demo for consistent-character cog image by fofr" model_description = "Create images of a given character in different poses" app = gr.Interface( fn=predict, inputs=inputs, outputs=outputs, title=title, description=model_description, allow_flagging="never", ) app.launch(share=True)