Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
from gradio_imageslider import ImageSlider | |
from huggingface_hub import hf_hub_download | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
from PIL import Image, ImageDraw | |
import numpy as np | |
MODELS = { | |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
} | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
) | |
state_dict = load_state_dict(model_file) | |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
) | |
model.to(device="cuda", dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
).to("cuda") | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
variant="fp16", | |
).to("cuda") | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
prompt = "high quality" | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(prompt, "cuda", True) | |
""" | |
def fill_image(image, model_selection): | |
margin = 256 | |
overlap = 24 | |
# Open the original image | |
source = image # Changed from image["background"] to match new input format | |
# Calculate new output size | |
output_size = (source.width + 2*margin, source.height + 2*margin) | |
# Create a white background | |
background = Image.new('RGB', output_size, (255, 255, 255)) | |
# Calculate position to paste the original image | |
position = (margin, margin) | |
# Paste the original image onto the white background | |
background.paste(source, position) | |
# Create the mask | |
mask = Image.new('L', output_size, 255) # Start with all white | |
mask_draw = ImageDraw.Draw(mask) | |
mask_draw.rectangle([ | |
(position[0] + overlap, position[1] + overlap), | |
(position[0] + source.width - overlap, position[1] + source.height - overlap) | |
], fill=0) | |
# Prepare the image for ControlNet | |
cnet_image = background.copy() | |
cnet_image.paste(0, (0, 0), mask) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
): | |
yield image, cnet_image | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), mask) | |
yield background, cnet_image | |
""" | |
def infer(image, model_selection, ratio_choice, overlap_width): | |
source = image | |
if ratio_choice == "16:9": | |
target_ratio = (16, 9) # Set the new target ratio to 16:9 | |
target_width = 1280 # Adjust target width based on desired resolution | |
overlap = overlap_width | |
#fade_width = 24 | |
max_height = 720 # Adjust max height instead of width | |
# Resize the image if it's taller than max_height | |
if source.height > max_height: | |
scale_factor = max_height / source.height | |
new_height = max_height | |
new_width = int(source.width * scale_factor) | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate the required width for the 16:9 ratio | |
target_width = (source.height * target_ratio[0]) // target_ratio[1] | |
# Calculate margins (now left and right) | |
margin_x = (target_width - source.width) // 2 | |
# Calculate new output size | |
output_size = (target_width, source.height) | |
# Create a white background | |
background = Image.new('RGB', output_size, (255, 255, 255)) | |
# Calculate position to paste the original image | |
position = (margin_x, 0) | |
# Paste the original image onto the white background | |
background.paste(source, position) | |
# Create the mask | |
mask = Image.new('L', output_size, 255) # Start with all white | |
mask_draw = ImageDraw.Draw(mask) | |
mask_draw.rectangle([ | |
(margin_x + overlap, overlap), | |
(margin_x + source.width - overlap, source.height - overlap) | |
], fill=0) | |
# Prepare the image for ControlNet | |
cnet_image = background.copy() | |
cnet_image.paste(0, (0, 0), mask) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
): | |
yield cnet_image, image | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), mask) | |
yield background, cnet_image | |
elif ratio_choice == "9:16": | |
target_ratio=(9, 16) | |
target_height=1280 | |
overlap=overlap_width | |
#fade_width=24 | |
max_width = 720 | |
# Resize the image if it's wider than max_width | |
if source.width > max_width: | |
scale_factor = max_width / source.width | |
new_width = max_width | |
new_height = int(source.height * scale_factor) | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate the required height for 9:16 ratio | |
target_height = (source.width * target_ratio[1]) // target_ratio[0] | |
# Calculate margins (only top and bottom) | |
margin_y = (target_height - source.height) // 2 | |
# Calculate new output size | |
output_size = (source.width, target_height) | |
# Create a white background | |
background = Image.new('RGB', output_size, (255, 255, 255)) | |
# Calculate position to paste the original image | |
position = (0, margin_y) | |
# Paste the original image onto the white background | |
background.paste(source, position) | |
# Create the mask | |
mask = Image.new('L', output_size, 255) # Start with all white | |
mask_draw = ImageDraw.Draw(mask) | |
mask_draw.rectangle([ | |
(overlap, margin_y + overlap), | |
(source.width - overlap, margin_y + source.height - overlap) | |
], fill=0) | |
# Prepare the image for ControlNet | |
cnet_image = background.copy() | |
cnet_image.paste(0, (0, 0), mask) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
): | |
yield cnet_image, image | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), mask) | |
yield background, cnet_image | |
def clear_result(): | |
return gr.update(value=None) | |
css = """ | |
.gradio-container { | |
width: 1024px !important; | |
} | |
""" | |
title = """<h1 align="center">Diffusers Image Outpaint</h1> | |
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
type="pil", | |
label="Input Image", | |
sources=["upload"], | |
) | |
with gr.Row(): | |
ratio = gr.Radio( | |
label="Expected ratio", | |
choices=["9:16", "16:9"], | |
value = "9:16" | |
) | |
model_selection = gr.Dropdown( | |
choices=list(MODELS.keys()), | |
value="RealVisXL V5.0 Lightning", | |
label="Model", | |
) | |
overlap_width = gr.Slider( | |
label="Mask overlap width", | |
minimum = 1, | |
maximum = 50, | |
value = 42, | |
step = 1 | |
) | |
run_button = gr.Button("Generate") | |
gr.Examples( | |
examples = [ | |
["./examples/example_1.webp", "RealVisXL V5.0 Lightning", "16:9"], | |
["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", "16:9"], | |
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", "9:16"] | |
], | |
inputs = [input_image, model_selection, ratio] | |
) | |
with gr.Column(): | |
result = ImageSlider( | |
interactive=False, | |
label="Generated Image", | |
) | |
run_button.click( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=infer, | |
inputs=[input_image, model_selection, ratio, overlap_width], | |
outputs=result, | |
) | |
demo.launch(share=False) | |