KingNish commited on
Commit
c5920e9
·
verified ·
1 Parent(s): cb28aaa

Most OP update

Browse files
Files changed (1) hide show
  1. app.py +101 -190
app.py CHANGED
@@ -47,178 +47,69 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
47
 
48
  pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
49
 
50
- prompt = "high quality"
51
- (
52
- prompt_embeds,
53
- negative_prompt_embeds,
54
- pooled_prompt_embeds,
55
- negative_pooled_prompt_embeds,
56
- ) = pipe.encode_prompt(prompt, "cuda", True)
57
-
58
-
59
 
60
  @spaces.GPU
61
- def infer(image, model_selection, ratio_choice, overlap_width):
62
-
63
  source = image
64
-
65
- if ratio_choice == "16:9":
66
- target_ratio = (16, 9) # Set the new target ratio to 16:9
67
- target_width = 1280 # Adjust target width based on desired resolution
68
- overlap = overlap_width
69
- #fade_width = 24
70
- max_height = 720 # Adjust max height instead of width
71
-
72
- # Resize the image if it's taller than max_height
73
- if source.height > max_height:
74
- scale_factor = max_height / source.height
75
- new_height = max_height
76
- new_width = int(source.width * scale_factor)
77
- source = source.resize((new_width, new_height), Image.LANCZOS)
78
-
79
- # Calculate the required width for the 16:9 ratio
80
- target_width = (source.height * target_ratio[0]) // target_ratio[1]
81
-
82
- # Calculate margins (now left and right)
83
- margin_x = (target_width - source.width) // 2
84
-
85
- # Calculate new output size
86
- output_size = (target_width, source.height)
87
-
88
- # Create a white background
89
- background = Image.new('RGB', output_size, (255, 255, 255))
90
-
91
- # Calculate position to paste the original image
92
- position = (margin_x, 0)
93
-
94
- # Paste the original image onto the white background
95
- background.paste(source, position)
96
-
97
- # Create the mask
98
- mask = Image.new('L', output_size, 255) # Start with all white
99
- mask_draw = ImageDraw.Draw(mask)
100
- mask_draw.rectangle([
101
- (margin_x + overlap, overlap),
102
- (margin_x + source.width - overlap, source.height - overlap)
103
- ], fill=0)
104
-
105
- # Prepare the image for ControlNet
106
- cnet_image = background.copy()
107
- cnet_image.paste(0, (0, 0), mask)
108
-
109
- for image in pipe(
110
- prompt_embeds=prompt_embeds,
111
- negative_prompt_embeds=negative_prompt_embeds,
112
- pooled_prompt_embeds=pooled_prompt_embeds,
113
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
114
- image=cnet_image,
115
- ):
116
- yield cnet_image, image
117
-
118
- image = image.convert("RGBA")
119
- cnet_image.paste(image, (0, 0), mask)
120
-
121
- yield background, cnet_image
122
-
123
- elif ratio_choice == "9:16":
124
-
125
- target_ratio=(9, 16)
126
- target_height=1280
127
- overlap=overlap_width
128
- #fade_width=24
129
- max_width = 720
130
- # Resize the image if it's wider than max_width
131
- if source.width > max_width:
132
- scale_factor = max_width / source.width
133
- new_width = max_width
134
- new_height = int(source.height * scale_factor)
135
- source = source.resize((new_width, new_height), Image.LANCZOS)
136
-
137
- # Calculate the required height for 9:16 ratio
138
- target_height = (source.width * target_ratio[1]) // target_ratio[0]
139
-
140
- # Calculate margins (only top and bottom)
141
- margin_y = (target_height - source.height) // 2
142
-
143
- # Calculate new output size
144
- output_size = (source.width, target_height)
145
-
146
- # Create a white background
147
- background = Image.new('RGB', output_size, (255, 255, 255))
148
-
149
- # Calculate position to paste the original image
150
- position = (0, margin_y)
151
-
152
- # Paste the original image onto the white background
153
- background.paste(source, position)
154
-
155
- # Create the mask
156
- mask = Image.new('L', output_size, 255) # Start with all white
157
- mask_draw = ImageDraw.Draw(mask)
158
- mask_draw.rectangle([
159
- (overlap, margin_y + overlap),
160
- (source.width - overlap, margin_y + source.height - overlap)
161
- ], fill=0)
162
-
163
- # Prepare the image for ControlNet
164
- cnet_image = background.copy()
165
- cnet_image.paste(0, (0, 0), mask)
166
-
167
- for image in pipe(
168
- prompt_embeds=prompt_embeds,
169
- negative_prompt_embeds=negative_prompt_embeds,
170
- pooled_prompt_embeds=pooled_prompt_embeds,
171
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
172
- image=cnet_image,
173
- ):
174
- yield cnet_image, image
175
-
176
- image = image.convert("RGBA")
177
- cnet_image.paste(image, (0, 0), mask)
178
-
179
- yield background, cnet_image
180
-
181
- elif ratio_choice == "1:1":
182
- target_ratio = (1, 1)
183
- target_size = (1024, 1024)
184
- overlap = overlap_width
185
-
186
- if source.width > target_size[0] or source.height > target_size[1]:
187
- scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
188
- new_width = int(source.width * scale_factor)
189
- new_height = int(source.height * scale_factor)
190
- source = source.resize((new_width, new_height), Image.LANCZOS)
191
-
192
- margin_x = (target_size[0] - source.width) // 2
193
- margin_y = (target_size[1] - source.height) // 2
194
-
195
- background = Image.new('RGB', target_size, (255, 255, 255))
196
- background.paste(source, (margin_x, margin_y))
197
-
198
- mask = Image.new('L', target_size, 255)
199
- mask_draw = ImageDraw.Draw(mask)
200
- mask_draw.rectangle([
201
- (margin_x + overlap, margin_y + overlap),
202
- (margin_x + source.width - overlap, margin_y + source.height - overlap)
203
- ], fill=0)
204
-
205
- cnet_image = background.copy()
206
- cnet_image.paste(0, (0, 0), mask)
207
-
208
- for image in pipe(
209
- prompt_embeds=prompt_embeds,
210
- negative_prompt_embeds=negative_prompt_embeds,
211
- pooled_prompt_embeds=pooled_prompt_embeds,
212
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
213
- image=cnet_image,
214
- ):
215
- yield cnet_image, image
216
-
217
- image = image.convert("RGBA")
218
- cnet_image.paste(image, (0, 0), mask)
219
-
220
- yield background, cnet_image
221
-
222
 
223
  def clear_result():
224
  return gr.update(value=None)
@@ -237,50 +128,61 @@ title = """<h1 align="center">Diffusers Image Outpaint</h1>
237
 
238
  with gr.Blocks(css=css) as demo:
239
  with gr.Column():
240
-
241
  gr.HTML(title)
242
 
243
  with gr.Row():
244
-
245
  with gr.Column():
246
-
247
  input_image = gr.Image(
248
  type="pil",
249
  label="Input Image",
250
  sources=["upload"],
251
  )
252
-
 
 
 
 
 
 
253
  with gr.Row():
254
- ratio = gr.Radio(
255
- label="Expected ratio",
256
- choices=["1:1", "9:16", "16:9"],
257
- value = "9:16"
 
 
 
 
 
 
 
 
 
258
  )
259
  model_selection = gr.Dropdown(
260
  choices=list(MODELS.keys()),
261
  value="RealVisXL V5.0 Lightning",
262
  label="Model",
263
  )
 
264
 
265
  overlap_width = gr.Slider(
266
  label="Mask overlap width",
267
- minimum = 1,
268
- maximum = 50,
269
- value = 42,
270
- step = 1
271
  )
272
-
273
- run_button = gr.Button("Generate")
274
 
275
  gr.Examples(
276
- examples = [
277
- ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", "9:16"],
278
- ["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", "16:9"],
279
- ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", "1:1"]
280
  ],
281
- inputs = [input_image, model_selection, ratio]
282
  )
283
-
284
  with gr.Column():
285
  result = ImageSlider(
286
  interactive=False,
@@ -293,9 +195,18 @@ with gr.Blocks(css=css) as demo:
293
  outputs=result,
294
  ).then(
295
  fn=infer,
296
- inputs=[input_image, model_selection, ratio, overlap_width],
297
  outputs=result,
298
  )
299
 
 
 
 
 
 
 
 
 
 
300
 
301
  demo.launch(share=False)
 
47
 
48
  pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
49
 
 
 
 
 
 
 
 
 
 
50
 
51
  @spaces.GPU
52
+ def infer(image, model_selection, width, height, overlap_width, num_inference_steps, prompt_input=None):
 
53
  source = image
54
+ target_size = (width, height)
55
+ target_ratio = (width, height) # Calculate aspect ratio from width and height
56
+ overlap = overlap_width
57
+
58
+ # Upscale if source is smaller than target in both dimensions
59
+ if source.width < target_size[0] and source.height < target_size[1]:
60
+ scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
61
+ new_width = int(source.width * scale_factor)
62
+ new_height = int(source.height * scale_factor)
63
+ source = source.resize((new_width, new_height), Image.LANCZOS)
64
+
65
+ if source.width > target_size[0] or source.height > target_size[1]:
66
+ scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
67
+ new_width = int(source.width * scale_factor)
68
+ new_height = int(source.height * scale_factor)
69
+ source = source.resize((new_width, new_height), Image.LANCZOS)
70
+
71
+ margin_x = (target_size[0] - source.width) // 2
72
+ margin_y = (target_size[1] - source.height) // 2
73
+
74
+ background = Image.new('RGB', target_size, (255, 255, 255))
75
+ background.paste(source, (margin_x, margin_y))
76
+
77
+ mask = Image.new('L', target_size, 255)
78
+ mask_draw = ImageDraw.Draw(mask)
79
+ mask_draw.rectangle([
80
+ (margin_x + overlap, margin_y + overlap),
81
+ (margin_x + source.width - overlap, margin_y + source.height - overlap)
82
+ ], fill=0)
83
+
84
+ cnet_image = background.copy()
85
+ cnet_image.paste(0, (0, 0), mask)
86
+
87
+ final_prompt = "high quality"
88
+ if prompt_input.strip() != "":
89
+ final_prompt += ", " + prompt_input
90
+
91
+ (
92
+ prompt_embeds,
93
+ negative_prompt_embeds,
94
+ pooled_prompt_embeds,
95
+ negative_pooled_prompt_embeds,
96
+ ) = pipe.encode_prompt(final_prompt, "cuda", True)
97
+
98
+ for image in pipe(
99
+ prompt_embeds=prompt_embeds,
100
+ negative_prompt_embeds=negative_prompt_embeds,
101
+ pooled_prompt_embeds=pooled_prompt_embeds,
102
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
103
+ image=cnet_image,
104
+ num_inference_steps=num_inference_steps
105
+ ):
106
+ yield cnet_image, image
107
+
108
+ image = image.convert("RGBA")
109
+ cnet_image.paste(image, (0, 0), mask)
110
+
111
+ yield background, cnet_image
112
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  def clear_result():
115
  return gr.update(value=None)
 
128
 
129
  with gr.Blocks(css=css) as demo:
130
  with gr.Column():
 
131
  gr.HTML(title)
132
 
133
  with gr.Row():
 
134
  with gr.Column():
 
135
  input_image = gr.Image(
136
  type="pil",
137
  label="Input Image",
138
  sources=["upload"],
139
  )
140
+
141
+ with gr.Row():
142
+ with gr.Column(scale=2):
143
+ prompt_input = gr.Textbox(label="Prompt (Optional)")
144
+ with gr.Column(scale=1):
145
+ run_button = gr.Button("Generate")
146
+
147
  with gr.Row():
148
+ width_slider = gr.Slider(
149
+ label="Width",
150
+ minimum=720,
151
+ maximum=1440,
152
+ step=8,
153
+ value=1440, # Set a default value
154
+ )
155
+ height_slider = gr.Slider(
156
+ label="Height",
157
+ minimum=720,
158
+ maximum=1440,
159
+ step=8,
160
+ value=1024, # Set a default value
161
  )
162
  model_selection = gr.Dropdown(
163
  choices=list(MODELS.keys()),
164
  value="RealVisXL V5.0 Lightning",
165
  label="Model",
166
  )
167
+ num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8 )
168
 
169
  overlap_width = gr.Slider(
170
  label="Mask overlap width",
171
+ minimum=1,
172
+ maximum=50,
173
+ value=42,
174
+ step=1
175
  )
 
 
176
 
177
  gr.Examples(
178
+ examples=[
179
+ ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720],
180
+ ["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", 720, 1280],
181
+ ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024],
182
  ],
183
+ inputs=[input_image, model_selection, width_slider, height_slider],
184
  )
185
+
186
  with gr.Column():
187
  result = ImageSlider(
188
  interactive=False,
 
195
  outputs=result,
196
  ).then(
197
  fn=infer,
198
+ inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input],
199
  outputs=result,
200
  )
201
 
202
+ prompt_input.submit(
203
+ fn=clear_result,
204
+ inputs=None,
205
+ outputs=result,
206
+ ).then(
207
+ fn=infer,
208
+ inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input],
209
+ outputs=result,
210
+ )
211
 
212
  demo.launch(share=False)