Spaces:
Running
on
Zero
Running
on
Zero
update some gradio API calls
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import json
|
|
5 |
import re
|
6 |
import random
|
7 |
import numpy as np
|
8 |
-
from gradio_client import Client
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -13,7 +13,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
13 |
def check_api(model_name):
|
14 |
if model_name == "MAGNet":
|
15 |
try :
|
16 |
-
client = Client("
|
17 |
return "api ready"
|
18 |
except :
|
19 |
return "api not ready yet"
|
@@ -25,7 +25,7 @@ def check_api(model_name):
|
|
25 |
return "api not ready yet"
|
26 |
elif model_name == "Riffusion":
|
27 |
try :
|
28 |
-
client = Client("
|
29 |
return "api ready"
|
30 |
except :
|
31 |
return "api not ready yet"
|
@@ -69,13 +69,12 @@ def extract_audio(video_in):
|
|
69 |
|
70 |
|
71 |
def get_caption(image_in):
|
72 |
-
kosmos2_client = Client("
|
73 |
kosmos2_result = kosmos2_client.predict(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
)
|
78 |
-
|
79 |
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
80 |
|
81 |
with open(kosmos2_result[1], 'r') as f:
|
@@ -121,20 +120,20 @@ def get_caption_from_MD(image_in):
|
|
121 |
|
122 |
def get_magnet(prompt):
|
123 |
|
124 |
-
client = Client("
|
125 |
result = client.predict(
|
126 |
-
"facebook/magnet-small-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
|
127 |
-
"", # str in 'Model Path (custom models)' Textbox component
|
128 |
-
prompt, # str in 'Input Text' Textbox component
|
129 |
-
3, # float in 'Temperature' Number component
|
130 |
-
0.9, # float in 'Top-p' Number component
|
131 |
-
10, # float in 'Max CFG coefficient' Number component
|
132 |
-
1, # float in 'Min CFG coefficient' Number component
|
133 |
-
20, # float in 'Decoding Steps (stage 1)' Number component
|
134 |
-
10, # float in 'Decoding Steps (stage 2)' Number component
|
135 |
-
10, # float in 'Decoding Steps (stage 3)' Number component
|
136 |
-
10, # float in 'Decoding Steps (stage 4)' Number component
|
137 |
-
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
|
138 |
api_name="/predict_full"
|
139 |
)
|
140 |
print(result)
|
@@ -157,12 +156,12 @@ def get_audioldm(prompt):
|
|
157 |
return audio_result
|
158 |
|
159 |
def get_riffusion(prompt):
|
160 |
-
client = Client("
|
161 |
result = client.predict(
|
162 |
-
prompt, # str in 'Musical prompt' Textbox component
|
163 |
-
"", # str in 'Negative prompt' Textbox component
|
164 |
-
None, # filepath in 'parameter_4' Audio component
|
165 |
-
10, # float (numeric value between 5 and 10) in 'Duration in seconds' Slider component
|
166 |
api_name="/predict"
|
167 |
)
|
168 |
print(result)
|
|
|
5 |
import re
|
6 |
import random
|
7 |
import numpy as np
|
8 |
+
from gradio_client import Client, handle_file
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
13 |
def check_api(model_name):
|
14 |
if model_name == "MAGNet":
|
15 |
try :
|
16 |
+
client = Client("fffiloni/MAGNet")
|
17 |
return "api ready"
|
18 |
except :
|
19 |
return "api not ready yet"
|
|
|
25 |
return "api not ready yet"
|
26 |
elif model_name == "Riffusion":
|
27 |
try :
|
28 |
+
client = Client("fffiloni/spectrogram-to-music")
|
29 |
return "api ready"
|
30 |
except :
|
31 |
return "api not ready yet"
|
|
|
69 |
|
70 |
|
71 |
def get_caption(image_in):
|
72 |
+
kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token)
|
73 |
kosmos2_result = kosmos2_client.predict(
|
74 |
+
image_input=handle_file(image_in),
|
75 |
+
text_input="Detailed",
|
76 |
+
api_name="/generate_predictions"
|
77 |
)
|
|
|
78 |
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
79 |
|
80 |
with open(kosmos2_result[1], 'r') as f:
|
|
|
120 |
|
121 |
def get_magnet(prompt):
|
122 |
|
123 |
+
client = Client("fffiloni/MAGNet")
|
124 |
result = client.predict(
|
125 |
+
model="facebook/magnet-small-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
|
126 |
+
model_path="", # str in 'Model Path (custom models)' Textbox component
|
127 |
+
text=prompt, # str in 'Input Text' Textbox component
|
128 |
+
temperature=3, # float in 'Temperature' Number component
|
129 |
+
topp=0.9, # float in 'Top-p' Number component
|
130 |
+
max_cfg_coef=10, # float in 'Max CFG coefficient' Number component
|
131 |
+
min_cfg_coef=1, # float in 'Min CFG coefficient' Number component
|
132 |
+
decoding_steps1=20, # float in 'Decoding Steps (stage 1)' Number component
|
133 |
+
decoding_steps2=10, # float in 'Decoding Steps (stage 2)' Number component
|
134 |
+
decoding_steps3=10, # float in 'Decoding Steps (stage 3)' Number component
|
135 |
+
decoding_steps4=10, # float in 'Decoding Steps (stage 4)' Number component
|
136 |
+
span_score="prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
|
137 |
api_name="/predict_full"
|
138 |
)
|
139 |
print(result)
|
|
|
156 |
return audio_result
|
157 |
|
158 |
def get_riffusion(prompt):
|
159 |
+
client = Client("fffiloni/spectrogram-to-music")
|
160 |
result = client.predict(
|
161 |
+
prompt=prompt, # str in 'Musical prompt' Textbox component
|
162 |
+
negative_prompt="", # str in 'Negative prompt' Textbox component
|
163 |
+
audio_input=None, # filepath in 'parameter_4' Audio component
|
164 |
+
duration=10, # float (numeric value between 5 and 10) in 'Duration in seconds' Slider component
|
165 |
api_name="/predict"
|
166 |
)
|
167 |
print(result)
|