fffiloni commited on
Commit
0435c60
1 Parent(s): 0c32eee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -13
app.py CHANGED
@@ -6,7 +6,6 @@ from huggingface_hub import snapshot_download
6
  import numpy as np
7
  from scipy.io import wavfile
8
 
9
-
10
  model_ids = [
11
  'suno/bark',
12
  ]
@@ -49,12 +48,22 @@ def infer(prompt, input_wav_file):
49
 
50
  # cloning a speaker.
51
  # It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz`
52
- output_dict = model.synthesize(text, config, speaker_id=f"{file_name}", voice_dirs="bark_voices/")
 
 
 
 
 
 
53
  print(output_dict)
54
 
55
  sample_rate = 24000 # Replace with the actual sample rate
56
 
57
- wavfile.write('output.wav', sample_rate, output_dict['wav'])
 
 
 
 
58
 
59
  # List all the files and subdirectories in the given directory
60
  contents = os.listdir(f"bark_voices/{file_name}")
@@ -63,13 +72,27 @@ def infer(prompt, input_wav_file):
63
  for item in contents:
64
  print(item)
65
 
66
- return "output.wav"
67
-
68
- gr.Interface(fn=infer,
69
- inputs=[gr.Textbox(label="Text to speech prompt"),
70
- gr.Audio(
71
- label="WAV voice to clone",
72
- type="filepath",
73
- source="upload")],
74
- outputs=[gr.Audio()],
75
- title="Instant Voice Cloning").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import numpy as np
7
  from scipy.io import wavfile
8
 
 
9
  model_ids = [
10
  'suno/bark',
11
  ]
 
48
 
49
  # cloning a speaker.
50
  # It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz`
51
+ output_dict = model.synthesize(
52
+ text,
53
+ config,
54
+ speaker_id=f"{file_name}",
55
+ voice_dirs="bark_voices/"
56
+ )
57
+
58
  print(output_dict)
59
 
60
  sample_rate = 24000 # Replace with the actual sample rate
61
 
62
+ wavfile.write(
63
+ 'output.wav',
64
+ sample_rate,
65
+ output_dict['wav']
66
+ )
67
 
68
  # List all the files and subdirectories in the given directory
69
  contents = os.listdir(f"bark_voices/{file_name}")
 
72
  for item in contents:
73
  print(item)
74
 
75
+ return "output.wav", f"bark_voices/{file_name}/{content[1]}"
76
+
77
+ gr.Interface(
78
+ fn=infer,
79
+ inputs=[
80
+ gr.Textbox(
81
+ label="Text to speech prompt"
82
+ ),
83
+ gr.Audio(
84
+ label="WAV voice to clone",
85
+ type="filepath",
86
+ source="upload"
87
+ )
88
+ ],
89
+ outputs=[
90
+ gr.Audio(
91
+ label="Text to speech output"
92
+ ),
93
+ gr.File(
94
+ label=".npz file"
95
+ )
96
+ ],
97
+ title="Instant Voice Cloning"
98
+ ).launch()